
Configuration Validation with Large Language Models
Xinyu Lian*

University of Illinois

Urbana-Champaign, IL, USA

lian7@illinois.edu

Yinfang Chen*

University of Illinois

Urbana-Champaign, IL, USA

yinfang3@illinois.edu

Runxiang Cheng

University of Illinois

Urbana-Champaign, IL, USA

rcheng12@illinois.edu

Jie Huang

University of Illinois

Urbana-Champaign, IL, USA

jeffhj@illinois.edu

Parth Thakkar

Meta Platforms, Inc.

Menlo Park, CA, USA

parthdt@meta.com

Tianyin Xu

University of Illinois

Urbana-Champaign, IL, USA

tyxu@illinois.edu

ABSTRACT
Misconfigurations are the major causes of software failures. Exist-

ing configuration validation techniques rely on manually written

rules or test cases, which are expensive to implement and maintain,

and are hard to be comprehensive. Leveraging machine learning

(ML) and natural language processing (NLP) for configuration val-

idation is considered a promising direction, but has been facing

challenges such as the need of not only large-scale configuration

data, but also system-specific features and models which are hard

to generalize. Recent advances in Large Language Models (LLMs)

show the promises to address some of the long-lasting limitations

of ML/NLP-based configuration validation techniques. In this paper,

we present an exploratory analysis on the feasibility and effective-

ness of using LLMs like GPT and Codex for configuration validation.

Specifically, we take a first step to empirically evaluate LLMs as

configuration validators without additional fine-tuning or code

generation. We develop a generic LLM-based validation framework,

named Ciri, which integrates different LLMs. Ciri devises effective

prompt engineering with few-shot learning based on both valid

configuration and misconfiguration data. Ciri also validates and ag-

gregates the outputs of LLMs to generate validation results, coping

with known hallucination and nondeterminism of LLMs. We evalu-

ate the validation effectiveness of Ciri on five popular LLMs using

configuration data of six mature, widely deployed open-source sys-

tems. Our analysis (1) confirms the potential of using LLMs for

configuration validation, (2) understands the design space of LLM-

based validators like Ciri, especially in terms of prompt engineering

with few-shot learning, and (3) reveals open challenges such as in-

effectiveness in detecting certain types of misconfigurations and

biases to popular configuration parameters.

1 INTRODUCTION
Modern cloud and web services evolve rapidly and deploy hundreds

to thousands of configuration changes to production systems on a

daily basis [14, 16, 51, 52, 73, 74, 76]. For example, at Meta/Facebook,

thousands of configuration changes are committed daily, outpacing

the frequency of source-code changes [51, 76]. Other cloud services

such as Google and Microsoft also frequently deploy configuration

changes [14, 16, 52]. Such rapid configuration changes inevitably

lead to misconfigurations, resulting in system failures. Today, mis-

configurations are among the dominating causes of production inci-

dents [29, 37, 51, 61, 68, 73, 100, 101]. For example, misconfiguration

∗
Co-primary authors.

is the second largest root-cause category of service disruptions at a

main Google production service [14].

To detect misconfigurations before deployment, today’s configu-

ration management systems typically employ the “configuration-

as-code” paradigm and enforce continuous configuration valida-

tion, ranging from static validation, to configuration testing, and

to manual review and approval. The configuration is first checked

by validation code (aka validators) based on predefined correct-

ness rules [15, 33, 42, 47, 56, 65, 76, 102]; in practice, validators

are written by engineers when introducing configuration parame-

ters. After passing validators, configuration changes are then tested

together with the code to ensure expected program behavior un-

der the changed configuration [75, 97]. Lastly, the configuration

changes go through the same process as source-code review, where

the change, commonly in the form of a configuration file “diff”, is

reviewed before production deployment.

The aforementioned configuration validation pipeline either re-

lies on manual inspection to spot misconfigurations in the con-

figuration file diffs, or requires significant engineering efforts to

implement and maintain validators or test cases. However, these

efforts are known to be costly and incomprehensive. For example,

despite the fact that mature projects all include extensive config-

uration checks, recent work [36, 43, 44, 77, 82, 96, 99] repeatedly

shows that existing checks are far from sufficient to catch miscon-

figurations. The reasons are twofold. First, with large-scale systems

exposing hundreds to thousands of configuration parameters [95],

implementing validators (or test cases) for every parameter becomes

a significant overhead. Recent studies [76, 99] report that many

parameters are not covered by existing checks, even in mature soft-

ware projects with many years of development history. Second, it is

nontrivial to validate each individual parameter, which could have

many different correctness properties, such as type, range, semantic

meaning, dependencies with other parameters, etc.; encoding each

of them as validators could be laborious and error-prone, not to

mention the high maintenance cost due to configuration-related

software evolution [104, 105]. These limitations also apply to the

configuration tests [75]. Compared with static validation, configura-

tion testing is also more time-consuming to run and more expensive

in terms of computing resources [23].

Using machine learning (ML) and natural language processing

(NLP) to detect misconfigurations has been considered a promising

approach to addressing the above challenges of configuration vali-

dation. Compared with manually written static validators and test

cases, ML or NLP-based approaches are automatic, easy to scale to

1

ar
X

iv
:2

31
0.

09
69

0v
1

 [
cs

.S
E

]
 1

5
O

ct
 2

02
3

a large number of parameters, and applicable to different systems

and environments. A number of ML/NLP-based misconfiguration

detection techniques are proposed in the literature [17, 41, 63, 64,

80, 85, 92, 103]. The key idea is to first learn correctness rules from

field configuration data [17, 38, 41, 63, 71, 72, 80, 85, 103] or from

documents [64, 92], and then use the learned rules to detect miscon-

figurations in new configuration files. ML/NLP-based approaches

have achieved good success. For example, Microsoft adopted Peer-

Pressure [34, 80] as a part of Microsoft Product Support Services

(PSS) toolkits. It collects configuration data in Windows Registry

from a large number of Windows users to learn statistical golden

states of system configurations.

However, ML/NLP-based misconfiguration detection has also

revealed significant limitations. First, the need of large volumes of

system-specific configuration datamakes it hard to apply those tech-

niques to outside corporations that collect user configurations (e.g.,

Windows Registry [85]) or maintain knowledge base or customer

tickets [64]. For example, in cloud/datacenter systems where the

same set of configurations is maintained by a small DevOps team,

there is no enough information for learning [99]. Moreover, prior

ML/NLP-based detection techniques all target specific systems/pro-

jects, and rely on predefined learning features [63], templates [103],

or models [64]. As a result, it is hard to generalize them to different

systems and their configurations.

Recent advances on Large Language Models (LLMs), such as

GPT [2] and Codex [3], show promises to address some of the

long-lasting limitations of traditional ML/NLP-based misconfig-

uration detection techniques. Specifically, LLMs are trained on

massive amounts of internet data, including configuration data—

configuration files in software repositories, configuration docu-

ments, knowledge-based articles, Q&A websites for resolving con-

figuration issues, etc. Consequently, LLMs encode the extensive

knowledge of both common and even project-specific configura-
tion for well-known projects. Such knowledge can be utilized for

configuration validation without the need for manual rule engineer-

ing. Furthermore, LLMs show the capability of generalization and

reasoning [31, 87] unlike the traditional ML approaches, and can

potentially “understand” the configuration semantics. For example,

they can not only generalize that values of a port must be in the

range of [0, 65535], but also reason that a specific configuration

value represents a port (e.g., based on the parameter name and

description) and thus has to be within the range.

Certainly, LLMs have limitations. Notably, they are known to

hallucinate responses and can be nondeterministic [13, 106]. Ad-

ditionally, LLMs have limited input context, which can pose chal-

lenges when encoding extensive contexts like configuration-related

code and execution environments. Moreover, they are reported to

be biased to popular content in the training dataset. However, there

are active efforts [10, 48, 50, 57, 83] addressing these limitations,

making them promising tools.

In this paper, we present an exploratory analysis on the feasibility

and effectiveness of using LLMs like GPT and Codex for configura-

tion validation. Our goal is to empirically evaluate the promises of

leveraging LLMs to develop effective configuration validators and

to understand the challenges. As a first step, we empirically evaluate

LLMs as configuration validators, without additional fine-tuning

or code generation. We focus on basic misconfigurations (those

violating explicit correctness constraints) which can potentially

be detected by LLMs directly. We do not target misconfigurations

specific to the execution environments or correct configuration

changes triggering bugs in the code. We discuss how to further

build on this work to detect those in §7.

To this end, we develop Ciri, an LLM-empowered configuration

validation framework. Ciri takes a configuration file or a file diff

as the input; it outputs a list of detected misconfigurations along

with the reasons that explain the misconfigurations. Ciri integrates

different LLMs such as Code-Davinci-002, GPT-3.5-turbo, and GPT-

4. Ciri devises effective prompt engineering with few-shot learning

based on existing configuration data. Additionally, Ciri validates

and aggregates the outputs of LLMs to generate validation results,

coping with known hallucination and nondeterminism of LLMs. A

key design principle of Ciri is separation of policy and mechanism—

it implements different mechanisms to support various policies. Ciri

can serve as an open framework for experimenting with different

prompt engineering approaches, training datasets, and validation

and aggregation methods.

We study the validation effectiveness of Ciri backed by five pop-

ular LLMs including advanced models (Code-davinci-002, GPT-3.5

Turbo, and GPT-4), and basic models (Babbage-002, and Davinci-

002). We use misconfiguration datasets of six mature, widely de-

ployed open-source systems (HCommon, HBase, Alluxio, HDFS,

YARN, and ZooKeeper). Our study confirms the potential of us-

ing LLMs for configuration validation, e.g., Ciri with GPT-4 shows

promising results at both file- and parameter-level, achieving up to

0.75 and 0.56 F1-scores, respectively. Our study also helps under-

stand the design space of LLM-based validators like Ciri, especially

in terms of prompt engineering with few-shot learning and vot-

ing. We find that few-shot learning using both valid configuration

and misconfiguration data as shots (examples) can significantly

enhance validation effectiveness. Specifically, labeled misconfigura-

tions are pivotal to validation effectiveness. Our results also reveal

open challenges such as ineffectiveness in detecting certain types

of misconfigurations and biases to popular configuration parame-

ters. While Ciri excels in identifying misconfigurations, it struggles

with specific misconfiguration types such as dependency violations

and version-specific misconfigurations. We also observe that the

popularity of configuration parameters creates biases in validation

results, causing both false positives and false negatives. In summary,

this paper makes the following main contributions:

• A new direction of configuration validation using pre-trained

large language models.

• Ciri, an LLM-empowered configuration validation framework

and an open platform for followup research. Ciri is released at

https://github.com/ciri4conf/ciri.

• An empirical study on the effectiveness of LLM-based configu-

ration validation which confirms the potential of the direction,

explores the design space, and reveals open challenges.

• A discussion on future endeavours such as fine-tuning, test gen-

eration to detect more types of misconfigurations, and detecting

configuration-related bugs.

• All code and data for results presented in this paper will be

released with detailed steps for reproducing our experiments.

2

https://github.com/ciri4conf/ciri

<name>io.file.buffer.size</name>
<value>4096</value>
<description>The size of buffer used during
read and write operations.

</description>

<name>io.bytes.per.checksum</name>
<value>4097</value>
<description>The number of bytes per
checksum.Must not be larger than
io.file.buffer.size.

</description> ...

Q: Are there any mistakes in the above
configuration file?

The value of io.bytes.per.checksum should be
less than or equal to io.file.buffer.size.

C
on

fig
.

A:

Example 1: LLM catches a dependency violation

<name>hadoop.ssl.hostname.verifier</name>
<value>STRICT_I8</value>
<description>The hostname verifier to
provide for HttpsURLConnections. Valid
values are: DEFAULT, STRICT, STRICT_I6,
DEFAULT_AND_LOCALHOST and ALLOW_ALL

</description> ...

The misconfiguration is the value of the
property "hadoop.security.crypto.cipher.suite".

<name>io.mapfile.bloom.error.rate</name>
<value>0.01</value>
<description>The rate of false positives in
BloomFilter-s used in BloomMapFile. As this
value decreases, the size of BloomFilter-s
increases exponentially. This value is the
probability of encountering false positives
(default is 0.5%).

</description> ...
C

on
fig

.

Are there any mistakes in the above
configuration file?

C
on

fig
.

Example 3: LLM misses an invalid option

Q:

A:

Example 4: LLM reports a false alarm

<name>dfs.journalnode.http-address</name>
<value>0.0.0.0:80800</value>
<description>The address and port the
JournalNode HTTP server listens on.

</description> ...

Q: Are there any mistakes in the above
configuration file?

The reason is that the port number is too big.
The port number should be less than 65535.

C
on

fig
.

A:

Example 2: LLM catches an invalid port value

Q:

The misconfiguration is that the value of the
property io.mapfile.bloom.error.rate is set to
0.01, which is too low.

A:

Are there any mistakes in the above
configuration file?

Figure 1: Example 1 and 2 show the LLM correctly catches and reasons the misconfigurations. Example 3 and 4 show the LLM
misses a misconfiguration or reports a valid configuration as erroneous.

2 EXPLORATORY EXAMPLES
We explore the capability of utilizing LLMs to validate configura-

tion files off-the-shelf. We argue that vanilla LLMs are capable of

detecting sophisticated misconfigurations. However, they are prone

to both false negatives and false positives that require further atten-

tion and handling. Figure 1 presents four examples, two of which

the LLM correctly detects the misconfiguration, and two of which

the LLM misses a misconfiguration or reports a false alarm. These

examples were generated using the Codex LLM (Code-Davinci-002)

developed by OpenAI [3, 20].

Detecting violation in configuration dependency. Extracting
and validating against dependency relationships between configura-

tion parameters has been a challenging task in highly-configurable

systems [21, 100]. LLM has the ability to infer relations between en-

tities from text at the level of human experts [18]. This ability allows

LLM to infer dependencies between parameters in a configuration

file based on their corresponding names and descriptions. By sim-

ply asking if any violation exists in the configuration, off-the-shelf

LLM can check if configured values satisfy the extracted relations

at runtime. This allows better applicability of LLMs for validating

configuration dependency when compared to prior techniques that

require manually codified rules [15, 76], program analysis [21, 99],

or specialized learning [64, 92].

Figure 1 (Example 1) presents a case where values of two depen-

dent parameters were changed (i.e., buffer.size and bytes.per.
checksum). After understanding the value relationship dependency

between these two parameters, the model determines that the

change in bytes.per.checksum has violated the enforced depen-

dency, and provides the correct reason for the misconfiguration.

Detecting violation with domain knowledge. Written config-

uration validation rules often require significant manual efforts

to produce and maintain. They are difficult to scale, due to the

diverse types and functionalities of configuration parameters. A

state-of-the-art LLM is trained on a massive amount of textual data

collected from the Internet, and possesses basic knowledge across a

wide range of professional domains. An LLM thus could be capable

of understanding the definition of a configuration parameter and

reasoning with its semantics. When the LLM encounters a con-

figuration parameter such as IP Address, permissions, masks, it

invokes the domain knowledge specific to the properties of those

parameters for user’s further instructions, such as validation. Fig-

ure 1 (Example 2) presents a case where an HTTP address has been

misconfigured to a semantically invalid value. The model identifies

the misconfiguration, reasons that its configured value has been

out of range, and further suggests potential direction for fixing.

Missed misconfiguration and false alarm. Despite that LLMs

have demonstrated impressive performance across many tasks since

its recent emergence, at the current stage of development, however,

LLMs as configuration validators are not without errors. Examples

3 and 4 in Figure 1 show two cases where the LLM makes mistakes

in the configuration validation.

In Example 3, the configuration file has provided a description of

the changed parameter hostname.verifier, and explicitly listed

the valid value options for the parameter. However, the model is

3

unable to identify that the parameter has been misconfigured to an

invalid, non-existent option (STRICT_I8). Example 4 is interesting

— the description suggests that the parameter bloom.error.rate
ranges from 0 to 100 (percentage), whereas the actual scale is 0

to 1 (fraction). This inconsistency supposedly confuses the model

making it mark 0.01 as invalid even though it is valid (1%) — a fairly

reasonable mistake for a human to make as well.

Both examples demonstrate that employing off-the-shelf LLMs

as configuration validators can result in false negatives and false

positives, thereby making the predictions less trustworthy. Incor-

rect validation outcomes could be attributed towards a phenom-

enon in LLMs termed hallucination, which is being actively in-

vestigated [60]. A simple explanation is that LLMs are exposed

to potentially contradictory data during training, which causes

confusion to the model at inference time.

To account for these factors, our study applies and evaluates

several mechanisms that can mitigate the impact of wrongful pre-

dictions made by LLMs in the context of configuration validation,

including few-shot learning, and reaching validation consensus

through majority voting (§3).

3 CIRI: A LLM-EMPOWERED CONFIGURA-
TION VALIDATION FRAMEWORK

We develop Ciri, a LLM-empowered configuration validation frame-

work. Ciri takes a configuration file or a file diff as the input. It

outputs a list of detected misconfigurations along with the reasons

to explain the misconfigurations. If no misconfiguration is detected,

Ciri outputs an empty list.

Ciri now supports five LLMs (Code-Davinci-002, GPT-3.5-turbo,

GPT-4, Babbage-002 and Davinci-002). Adding a new LLM in Ciri

takes a few lines of code to adopt the LLM’s query APIs. Figure 2

gives an overview of Ciri. Ciri turns a configuration validation

request into a prompt to the LLMs (§3.1). The prompt includes 1)

the input configuration file or diff, 2) a few examples (referred to

as shots) to demonstrate the task of configuration validation, and

3) directive question and metadata. To generate shots, Ciri uses its

database that contains labeled configuration data, including both

valid configurations and misconfigurations. To validate a configu-

ration file, Ciri sends the same query to the LLMs multiple times

and aggregates the responses into the final validation result (§3.2).

Ciri can be applied to any software project, even if it has no

configuration data of that project. Ciri can directly query advanced

LLMs like GPT-4 with zero shot, and achieves considerable effective-

ness (Finding 2). Ciri exhibits the ability to transfer configuration-

related knowledge across projects when using configurations from

different projects as shots (Finding 4). Ciri’s configuration valida-

tion effectiveness can also be further improved with high-quality

generated shots (Finding 3).

3.1 Prompt Engineering
Prompt Structure. Ciri generates a prompt that includes three

elements: 1) the content of input configuration file or file diff, 2)

the shots as ValidConfig or misconfiguration files with example

questions and ground truth responses for few-shot learning, and

3) a directive question for LLM to respond in formatted output.

Figure 3 shows an illustrative example of the prompt generated by

Ciri
Config.

Ciri

Query

LLM

Shot File Selection

Labeled Misconfiguration shot

Valid configuration shot

Answer...
Are there any mistakes...

<name>io.bytes.per.checksum</name>
<value>4097</value>

Q:

Configuration Shot File

C
on
fig
.

A:

Prompt Generation

Config.
shots

Config.
to validate

Result Generation
• Validation
• Voting Response

Configuration
Database

User
Result

Figure 2: System overview of Ciri.

Ciri. It contains 𝑁 shots, content of the validating configuration

file, followed by the directive question.

Ciri phrases the prompting question as “Are there any mistakes in
the above configuration file for [PROJECT] version [VERSION]? Re-
spond in a JSON format similar to the following: ...”. The [PROJECT]
and [VERSION] are required inputs of Ciri because validity of a

configuration file can change by project and project version. This

prompt format enforces the LLM to respond in a unified JSON for-

mat for automated result aggregation (§3.2). However, responses

from LLMs sometimes may still deviate from the anticipated for-

mat [13, 106]. In such cases, Ciri retries a new query to the LLM.

Few-Shot Learning. Ciri leverages the LLM’s ability to learn from

examples at inference time (referred to as few-shot learning) to

improve configuration validation effectiveness. To do so, Ciri simply

inserts shots at the beginning of each prompt. Each shot contains a

configuration file, the prompting question, and its corresponding

ground truth. Figure 3 provides an example. In Figure 3, there are

𝑁 shots. “Configuration File Shot #1” is the first shot, in which the

parameter file.bytes-per-checksum in the configuration file is

misconfigured. This shot also contains the prompting question

(orange box) and the corresponding ground truth (blue box).

Shot Generation and Selection. Ciri maintains a database of

labeled valid configurations and misconfigurations. It is used for

generating valid configuration shots (ValidConfig) and misconfigu-

ration shots (Misconfig). A ValidConfig shot specifies a set of con-

figuration parameters and their valid values. A valid value of a

parameter can be its default value, or other valid values used in

practice. A Misconfig shot specifies a set of parameters and their

values, where only one of the parameters’ value is invalid. We pro-

vide more details on how to generate valid/invalid configuration

values in this paper in §4.

For a configuration file or diff of a specific project, Ciri by default

generates shots using the configuration data of the same project.

If Ciri’s database does not contain configuration data for the tar-

get project, Ciri would use available data (from other projects) to

generate shots. As we will show (§5.2), LLMs possess transferrable

knowledge in configuration across different projects.

Ciri supports various strategies to select the shot data, including

randomized selection, selecting from different configuration/mis-

configuration types, and selecting from configuration parameters

similar to the validating configuration (using cosine similarity). We

did not observe major differences in these selection strategies so

Ciri uses randomized selection by default.

4

<name>file.bytes-per-checksum</name>
<value>-1</value>
<description>The number of bytes per checksum. Must
not be larger than file.stream-buffer-size
</description> ...

Question: Are there any mistakes in the above
configuration file for Hadoop Common version 3.3.0?
Respond in a json format similar to the following:
{
"hasError": boolean, // true if there are errors,

false if there are none
"errParameter": [], // List containing properties

with errors
"reason": [], // List containing explanations for

each error
}

Configuration File Shot #1

Answer:
{
"hasError": true,
"errParameter": ["file.bytes-per-checksum"],
"reason": ["The value of the property

'file.bytes-per-checksum' is out of range. It
should be greater than 0."]
}

<name>fs.s3.sleepTimeSeconds</name>
<value>10s</value>
<description>The number of seconds to sleep

between each S3 retry.</description>

Question: Are there any mistakes in the above
configuration file for Hadoop Common version 3.3.0?
Respond in a json format similar to the following:
{
"hasError": boolean, // true if there are errors,

false if there are none
"errParameter": [], // List containing properties

with errors
"reason": [], // List containing explanations for

each error
}

……

Configuration File Shot #N

To Be Validated Configuration File

Figure 3: An example prompt generated by Ciri.

Addressing Token Limits. LLMs limit input size per query by the

number of input tokens. For example, the token limits for GPT-4 and

GPT-3.5-turbo (the 16K variant) are 4,097 and 16,385 respectively.

To navigate these constraints, Ciri compresses the prompt if its size

cannot fit the token limit. Ciri prioritizes putting the validating

configuration file and the directive question in the prompt, then

applies a number of strategies to maximize the number of shots that

can fit into the remaining token limit. If the validating configuration

file itself cannot fit into the token limit, Ciri transforms the original

file into a more compact format, e.g., transforming an XML file into

INI format. If the compressed input still cannot fit, Ciri aborts and

returns errors. In practice, real-world configuration file are small [1],

which lefts enough space to include shots. For example, prior study

inspects configuration files collected from Docker, where each file

contains 1 to 18 parameters, with 8 parameters on average [1]. For

the extremely large configuration file, Ciri can split it into smaller

snippets, which can be validated separately and reasoned together.

3.2 Result Generation
The JSON response from LLMs contains three primary fields: 1)

hasError: a boolean value indicating if a misconfiguration is de-

tected, 2) errParameter: an array of strings specifying the miscon-

figured parameter, and 3) reason: an array of strings explaining

the detected misconfiguration.

Validation against Hallucination. We use a few rules to counter

the hallucination of LLMs. For example, if hasError is False, both
errParameter and reasonmust be empty. Conversely, if hasError
returns True, errParameter and reason should not be empty and

have the same array size. The answer to errParameter also should
not contain repeated values. If a response fails these rules, Ciri

discards it and retries until the LLM returns a valid response.

Voting against Inconsistency. LLMs can produce inconsistent

outputs in conversation [6], explanation [19], and knowledge extrac-

tion tasks [25]. To mitigate inconsistency, Ciri uses a multi-query

strategy—querying the LLM multiple times using the same prompt

and aggregating the responses. When aggregated with a voting

mechanism, these responses converge towards a solution that is

both representative of the model’s understanding and more consis-

tent than a single query. Ciri uses a frequency-based voting strategy:

the output that recurs most often among the responses is selected

as the final output [83].

Note that the reason field is not considered during voting due

to the diverse nature of the response. After voting, Ciri collects

the reason from all responses that are associated with the selected

errParameter. The reason field is important as it provides users

with insights into the misconfiguration, which is different from

the traditional ML approaches that only provide a binary answer

with a confidence score. However, the content of reason may not

always be useful due to hallucination. Ciri clusters reasons based

on TF-IDF similarity, and picks a reason from the dominant cluster.

We found that hallucinated reasons were often avoided this way

as they tended to be very different from each other.

3.3 Ciri Configuration
Ciri is highly customizable, with a basic principle of separating

policy and mechanism. Users can customize Ciri via its own con-

figurations. Table 1 shows several important Ciri configurations

and default values. The values are chosen by pilot studies using a

subset of our dataset (§4).

Table 1: System config of Ciri and their default values.

Parameter Description Default Value

Model Backend LLM. Also allows users to add other LLMs. GPT-4

Temperature Tradeoff between creativity and determinism. 0.2

Shots The number of shots included in a prompt. Dynamic

Queries The number of queries with the same prompt. 10

4 BENCHMARKS AND METRICS

Software Systems We evaluate six popular, open-source systems:

Hadoop Common, HBase, Alluxio, HDFS, YARN, and ZooKeeper.

They all are mature, widely deployed systems. These systems are

highly configurable with a large number of configuration parame-

ters. Table 3 lists the version (SHA), and the total number of param-

eters at that version for each system.

5

Table 2: Misconfiguration generation rules (extended from prior work [44]). “(Sub-)Category” list different sets of violations
that can be applied to a configuration parameter to generate its misconfigured values.

Category Sub-Category Specification Generation Rules

Syntax

Data type

Value set = {Integer, Float, Long...} Use a value that doesn’t belong to set

Numbers with units Use a non-existent unit (e.g., "nounit")

Path ^(\/[^\/]*)+\/?$ Use a value that violates the pattern (e.g., /hello//world)

URL [a-z]+://.* Use a value that violates the pattern (e.g., file///)

IP Address [\d]{1,3}(.[\d]{1,3}){3} Use a value that violates the pattern (e.g., 127.x0.0.1)

Port Data type, value set = {Octet} Use a value that doesn’t belong to set

Permission Data type, value set = {Octet} Use a value that doesn’t belong to set

Range

Basic numeric Valid Range constrainted by data type Use the values beyond the valid range (e.g., Integer.MAX_VALUE+1)

Bool Options, value set = {true, false} Use a value that doesn’t belong to set

Enum Options, value set = {“enum1”, “enum2”, ...} Use a value that doesn’t belong to set

IP Address Range for each octet = [0, 255] Use a value beyond the valid range (e.g., 256.123.45.6)

Port Range = [0, 65535] Use a value beyond the valid range

Permission Range = [000, 777] Use a value beyond the valid range

Dependency

Control (𝑃1,𝑉 ,^) ↦→ 𝑃2 , ^ ∈ {>, ≥,=,≠,<, ≤} Use invalid control condition (𝑃1,𝑉 ,¬^)
Value Relationship (𝑃1, 𝑃2,^) , ^ ∈ {>, ≥,=,≠,<, ≤} Use invalid value relationship (𝑃1, 𝑃2,¬^)

Version Parameter change (𝑉1, 𝑃𝑠𝑒𝑡1) ↦→ (𝑉2, 𝑃𝑠𝑒𝑡2) , 𝑃𝑠𝑒𝑡1 ≠ 𝑃𝑠𝑒𝑡2 Use a removed parameter in𝑉2 or use an added paraemter in𝑉1

Table 3: Software systems, and configuration datasets (includ-
ing both ValidConfig and Misconfig datasets).

Software Version (SHA) #Params ValidConfig Dataset Misconfig Dataset
Shot Pool Eval. Set Shot Pool Eval. Set

HCommon aa96f18 395 16 64 16 64

HBase 0fc18a9 221 12 50 12 50

Alluxio 76569bc 494 13 54 13 54

HDFS aa96f18 566 16 64 16 64

YARN aa96f18 525 10 40 10 40

ZooKeeper e3704b3 32 8 32 8 32

Configuration Dataset To evaluate the effectiveness of config-

uration validation, we create new datasets for each system. First,

we collect valid configuration values based on the default config-

uration file from each system, as well as configuration files from

the Ctest dataset [1]. The configuration files in the Ctest dataset

was collected from public Docker images that deploy the target sys-

tems [75, 81, 98]. We then generate misconfigurations of different

types. The generation is based on prior studies on misconfigura-

tions [36, 43, 44, 99], which violates the constraints of configuration

parameters as shown in Table 2.

For each project, we build two distinct sets of configuration files.

First, we build a dataset of configuration files with no misconfigu-

ration (denoted as ValidConfig) to measure true negatives and false

positives (Table 4). Concurrently, we also build a dataset of configu-

ration files in which each file has one misconfiguration (denoted as

Misconfig) to measure true positives and false negatives (Table 4).

A misconfiguration can be a dependency violation between values

of multiple parameters.

To build Misconfig for a project, we first check if a configuration

parameter fits the specification of any sub-category in Table 2, and

assign it to all sub-categories that fit. For example, an IP-address

parameter can be assigned to “Syntax: IP Address” and “Range: IP

Address”. And we do so for all parameters in the project. Then, we

randomly sample at most 5 parameters in each sub-category that

has a non-empty set of assigned parameters, and generate invalid

value(s) per sampled parameter using the corresponding genera-

tion rules. For each non-empty sub-category, we further randomly

select one parameter and its generated invalid value(s) from the

5 previously-sampled parameters. We use that one parameter to

create a faulty configuration file as a Misconfig shot (§3) for that

sub-category, and add this shot to the project’s shot pool. For the

remaining 4 parameters, we use them to create 4 faulty configu-

ration files for that sub-category, and add them to the evaluation

set. If a sub-category does not have enough parameters for the

aforementioned samplings, we use all its assigned parameters to

create files for the evaluation set. We separate the evaluation set

and shot pool to follow the practice that the learning shot data does

not overlap with the testing data [18].

We build ValidConfig for a project following the same methodol-

ogy we used to build the Misconfig mentioned above, except that

we generate valid values for the sampled parameters. Table 3 shows

the size for both the ValidConfig and Misconfig datasets per project.

It’s worth noting that our datasets cover 72%–100% of the total

number of parameters in each evaluated system.

Models We evaluate Ciri with five state-of-the-art LLMs: GPT-4,

GPT-3.5-turbo (16k), Code-Davinci-002, Babbage-002, Davinci-002.

These models are the most widely used LLMs, each of which differs

in training procedures and/or training data. They are trained on

a large amount of code data, and show promising capability in

handling a number of software engineering tasks [22, 78, 91].

• Code-Davinci-002 is optimized for code completion tasks based

on GPT-3.5, and is capable at translating natural language to code.

Code-Davinci-002 has 175 billion parameters, and was trained on

data collected until June 2021. Its token limit per query is 8,001.

• GPT-3.5-turbo (16k) is a successor to Code-Davinci-002. Com-

pared with Code-Davinci-002, GPT-3.5-turbo further uses an

effective optimization technique called RLHF to follow instruc-

tions [109]. GPT-3.5-turbo has unknown number of parameters

and was trained on data available up to September 2021. Since

the base turbo model has a token limit of only 4,097 per query,

we use its variant that extends the token limit to 16,385.

• GPT-4 is claimed to be the most advanced and widely-used LLM

up to date [60]. Compared with GPT-3.5-turbo, GPT-4 is larger in

size. GPT-4 is trained on data prior to September 2021, its token

limit per query is 8,192.

6

• Babbage-002 and Davinci-002, successors to the legacy GPT-3, are

two base models [5]. They were not fine-tuned with instruction-

following technique [62], which aligns models with specific

prompts and desired outputs. Both models have a 16,384 token

limit per query.

Metrics We evaluate the effectiveness of LLMs on configuration

validation at both configuration file and configuration parameter
levels. At file level, we want to know whether the model can de-

termine if a configuration file is fully valid or misconfigured. At

parameter level, we want to knowwhether the model can determine

if each parameter in the configuration file is valid or erroneous.

We describe the definitions of the terms used in confusion matrix

in Table 4. We then compute the Precision, Recall, and F1-score at

both levels to assess the LLM’s effectiveness. If not specified, we

default to Macro averaging since each project is regarded equally.

We prioritize studying parameter-level effectiveness because it pro-

vides more fine-grained measurements. We default to discussing

parameter-level metrics in §5 unless noted otherwise.

Table 4: Definitions for confusion matrix (CM) terms.

Level CM Definition

File

TP A misconfigured configuration file correctly identified

FP A correct configuration file wrongly flagged as misconfigured

TN A correct configuration file rightly identified as valid

FN A misconfigured configuration file overlooked or deemed correct

Param.

TP A misconfigured parameter correctly identified

FP A correct parameter wrongly flagged as misconfigured

TN A correct parameter rightly identified as valid

FN A misconfigured parameter overlooked or deemed correct

5 EVALUATION AND FINDINGS
In this section, we first present results on evaluating the effective-

ness of LLMs as configuration validators with Ciri (§5.1). We then

analyze how validation effectiveness changes with regard to shots

in few-shot learning (§5.2). We also present our understanding on

when Ciri produces wrongful validation results (§5.3) and observed

biases from LLMs’ training (§5.4).

5.1 Validation Effectiveness

Finding 1. Ciri demonstrates the effectiveness of using state-of-
the-art LLMs as configuration validators. It achieves file-level and
parameter-level F1-scores of up to 0.75 and 0.56, respectively.

Ciri exhibits remarkable capability in configuration validation. Ta-

ble 5 shows the F1-score, precision, and recall for each project

and LLM under four-shot setting (§3)—the most effective few-shot

learning setting obtained from our later experiments (§5.2). Table 5

shows that: beyond merely identifying misconfiguration files, with

an average F1-score ranging from 0.62 to 0.75, LLMs can also adept

at pinpoint erroneous parameters and discern the causes of the

misconfigurations. Among the top-three LLMs, the parameter-level

F1-scores are approximately 25% lower than their file-level coun-

terparts, this shows that identifying misconfigured parameters is

currently a more challenging task for LLMs than classifying if a

configuration change is erroneous.

When using legacy models, we observe they lack the ability of

effective configuration validation. Specifically, for Babbage-002, its

F1-score has a sharp drop from file-level (0.62) to parameter-level

(0.09), indicating that it is not able to localize the actual misconfig-

ured parameter accurately. One reason is that Babbage-002 lacks

optimization for instruction-following [62], leading it to produce

inappropriate results. Furthermore, we also evaluate the Davinci-

002, and it cannot detect any misconfiguration within our dataset

(omitted from Table 5).

Finding 2. Providing configuration file examples (shots) for the val-
idation query can effectively improve LLMs’ configuration validation
effectiveness. Without shots, LLMs often report false alarms or miss
misconfigurations, e.g., Code-Davinci-002’s F1-score at parameter-
level is as low as 0.08—with shots, its file-level and parameter-level
F1-scores can be improved by 0.56 and 0.48 respectively.

Validation examples (shots) play an important role in improving the

effectiveness of LLMs for configuration validation. Table 6 shows

the performance of LLMs when the configuration validation query

does not include shots from Ciri. In particular, comparing Table 6

to Table 5, the average F1-score of the top-three LLMs has de-

creased by 0.08-0.56 at the file-level, and decreased by 0.09-0.48

at the parameter-level. Without any shots, both Davinci-002 and

Babbage-002 cannot detect any misconfiguration in our dataset; we

thus omitted them in Table 6.

Implication. Our result suggests that state-of-the-art LLMs (e.g.,

GPT-4, GPT-3.5-turbo) can be applied to configuration validation

in a properly designed framework like Ciri to achieve promising

effectiveness. Specifically, generating and providing configuration

validation examples along with the validation query can improve

off-the-shelf LLMs’ misconfiguration detection effectiveness. How-

ever, legacy LLMs (e.g., Davinci-002, Babbage-002) are often inca-

pable of configuration validation due to insufficient training data

and/or outdated training mechanisms [2, 62].

5.2 Impacts of Few-shot Learning
Following the implication in Section 5.1, we conduct a series of

experiments to study how the configuration validation effectiveness

of LLMs can be improved over different shot combinations.

We evaluate six 𝑁 -shot learning settings, where 𝑁 ranges from

0 to 5. For each of these settings, we use Ciri to generate different

combinations of shots drawn from the ValidConfig and Misconfig
datasets (§4). For example, to evaluate GPT-3.5-turbo on HCommon

with a two-shot setting, three experiments will be performed: (1)

two ValidConfig shots; (2) one ValidConfig shot plus one Misconfig
shot; (3) two Misconfig shots, drawn from the HCommon’s shot

database. In total, we experiment with 21 shot combinations for

each project and LLM. To control cost, we limit the experiment to

two LLMs (GPT-3.5-turbo and Code-Davinci-002) on three systems

(HCommon, HBase, Alluxio).

Finding 3. Including both ValidConfig and Misconfig shots for LLMs
delivers the optimal configuration validation effectiveness. Meanwhile,
Misconfig shots are more crucial to validation effectiveness than Valid-
Config shots. For example, both GPT-3.5-turbo and Code-Davinci-002
achieve their highest F1-score with three Misconfig shots and one
ValidConfig shot.

7

Table 5: Effectiveness of LLMs under Ciri.

Models
F1-score Precision Recall

File-Level (F.L.) Parameter-Level (P.L.) F.L. P.L. F.L. P.L.
HC. HB. AL. HD. YA. ZK. Avg HC. HB. AL. HD. YA. ZK. Avg Avg Avg Avg Avg

GPT-4 0.80 0.74 0.74 0.77 0.72 0.72 0.75 0.64 0.56 0.57 0.60 0.53 0.47 0.56 0.63 0.43 0.93 0.83

GPT-3.5-turbo 0.74 0.72 0.76 0.74 0.71 0.72 0.73 0.52 0.60 0.47 0.56 0.46 0.55 0.52 0.67 0.42 0.82 0.73

Code-Davinci-002 0.74 0.75 0.79 0.68 0.70 0.71 0.73 0.59 0.62 0.53 0.51 0.54 0.59 0.56 0.63 0.48 0.87 0.71

Babbage-002 0.66 0.65 0.66 0.64 0.58 0.54 0.62 0.08 0.11 0.11 0.02 0.08 0.14 0.09 0.51 0.08 0.81 0.11

Table 6: Effectiveness of LLMs without using shots from Ciri.

Models
F1-score Precision Recall

File-Level (F.L.) Parameter-Level (P.L.) F.L. P.L. F.L. P.L.
HC. HB. AL. HD. YA. ZK. Avg HC. HB. AL. HD. YA. ZK. Avg Avg Avg Avg Avg

GPT-4 0.66 0.68 0.64 0.69 0.62 0.73 0.67 0.53 0.62 0.46 0.48 0.39 0.33 0.47 0.76 0.44 0.62 0.55

GPT-3.5-turbo 0.61 0.61 0.75 0.66 0.68 0.61 0.65 0.20 0.37 0.19 0.25 0.24 0.21 0.24 0.66 0.16 0.67 0.55

Code-Davinci-002 0.24 0.25 0.00 0.36 0.14 0.06 0.17 0.11 0.10 0.00 0.17 0.10 0.00 0.08 0.56 0.08 0.11 0.09

Figure 4 shows how the average F1-score, precision and recall across

projects for GPT-3.5-turbo and Code-Davinci-002 under different

shot combinations. WithoutMisconfig, LLMs’ performance is easily

limited. For example, when only using ValidConfig shots in the

prompt, Code-Davinci-002 only gets an F1-score around 0.2 (i.e.,

the first column of the heat map in Figure 4b). Compared with

ValidConfig shots, Misconfig shots allow Ciri to more effectively

identify patterns and attributes of misconfigurations at inference

time. In both Figure 4a-4b, F1-score increases at more Misconfig
shots are used in the prompt.

On the other hand, providing onlyMisconfig shots can introduce

bias to the LLM and lead to a performance decrease. This is because

the text distribution in the input query can significantly impact

the performance of LLMs [54]. In our evaluation, after providing a

sufficient number of Misconfig shots, we indeed see that providing

more ValidConfig shots can sometimes reduce the number of false

positives for Code-Davinci-002 and false negatives for GPT-3.5-

turbo. Overall, using both Misconfig and ValidConfig in few-shot

learning settings mitigates the biases of LLMs and delivers the

optimal configuration validation performance.

Finding 4. Using configuration files from the same system as shots
for LLMs delivers the optimal configuration validation effectiveness.
When same-system shots are unavailable, using configuration files
from a different system could also improve validation effectiveness
over zero-shot. For example, on HCommon, the parameter-level F1-
score improved by 0.39 averaged across the top three LLMs.

In situations where configuration data of target systems is unavail-

able, we evaluate the possibility of using configuration files from

other systems as shots for LLMs can improve the configuration

validation effectiveness on the target system. Table 7 shows our

evaluation results of using shots from other systems for LLMs to

do configuration validation on HCommon. By comparing the HC.

columns with other columns in Table 7, we can see that using shots

from other systems is not as effective as using shots from the target

system. However, by comparing the average F1-score in Table 7

with the HC. columns in Table 6, we find that using shots from

other systems is generally more effective than not using any shots.

Our observations highlight that Ciri with the underlying LLMs

can transfer configuration-related knowledge across different sys-

tems for effective configuration validation compared to traditional

validation approaches (§1).

In contrast to the other LLMs, using cross-system shots actually

decreases the F1-score compared to the zero-shot setting on GPT-

4. One possible explanation is that examples from other systems

also introduce noise that is contradictory to the target system’s

configuration data. LLMs can pick up such noise and produce an

inaccurate validation outcome.

Finding 5. The validation effectiveness is higher if the misconfigura-
tion in the validating configuration file belongs to the same violation
(sub-)categories as the misconfigurations in the shots, compared to
when it does not.

Table 8 shows that when the validating configuration file contains

misconfiguration belonging to the same (sub-)categories of vio-

lation as the misconfigurations in the shots, the LLMs’ F1-score

improves significantly. When the misconfigurations between the

shot and the evaluated file are caused by the same category (e.g.,

syntax or range error from Table 2), parameter-level F1-score im-

proves by up to 30% compared to when they are not caused by the

same category of violations. When they are caused by the same

sub-category of violation (i.e., they are violated similarly and have

the same parameter type), F1-score improves by up to 69.5%.

Table 8: Improvement in parameter-level F1-score when the
misconfiguration in the evaluated file belongs to the same
violation (sub-)category as the misconfiguration in the shot,
compared to when they do not.

Models Category Sub-Category
Diff. Same %Improv. Diff. Same %Improv.

GPT-4 0.57 0.65 +12.9% 0.60 0.57 -5.3%

GPT-3.5-turbo 0.41 0.53 +28.2% 0.45 0.51 +12.8%

Code-Davinci-002 0.44 0.61 +37.0% 0.48 0.81 +69.5%

Implication. To improve LLM’s performance as a configuration

validator with few-shot learning, developers can leverage frame-

works like Ciri to collect and generate high-quality, comprehensive

configuration validation examples as shots. The provided shots in

the prompt should be composed of misconfiguration files in which

8

0 1 2 3 4 5

0

1

2

3

4

5

0.660.730.650.640.610.60

0.700.690.720.740.72

0.680.670.700.72

0.680.670.69

0.690.69

0.69

F-1 Score
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.250.370.440.500.500.52

0.180.320.420.530.51

0.180.380.400.50

0.200.350.43

0.190.42

0.23

Param-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.720.760.920.960.880.90

0.640.540.600.720.74

0.530.510.560.64

0.550.510.57

0.570.54

0.59

Precision
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.180.260.410.540.570.66

0.100.200.290.430.43

0.100.260.280.40

0.120.240.32

0.110.30

0.14

Param-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.640.710.500.480.470.47

0.810.970.880.760.71

0.950.990.910.83

0.920.960.88

0.910.95

0.87

Recall
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.540.660.490.460.440.44

0.770.780.750.700.63

0.840.760.710.69

0.820.710.70

0.730.71

0.70

Param-Level

Number of ValidConfig Shot

Nu
m

be
r o

f M
isc

on
fig

 S
ho

t

(a) Heatmaps of F1-score, Precision and Recall of GPT-3.5-turbo

0 1 2 3 4 5

0

1

2

3

4

5

0.160.740.740.700.740.68

0.480.710.750.760.76

0.420.630.720.76

0.410.630.73

0.390.59

0.38

F-1 Score
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.070.370.490.540.580.53

0.210.390.490.580.56

0.260.370.560.56

0.200.450.49

0.170.40

0.18

Param-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.420.710.710.730.780.74

0.850.640.660.700.67

0.780.690.760.75

0.770.760.79

0.420.83

0.55

Precision
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.060.300.460.530.620.60

0.220.340.410.520.49

0.470.370.570.54

0.490.530.52

0.150.56

0.18

Param-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.100.800.790.720.770.72

0.400.810.880.840.88

0.360.640.710.79

0.380.560.70

0.390.50

0.32

Recall
File-Level

0 1 2 3 4 5

0

1

2

3

4

5

0.090.490.560.580.600.55

0.320.470.600.660.67

0.260.400.550.58

0.220.410.47

0.190.35

0.19

Param-Level

Number of ValidConfig Shot

Nu
m

be
r o

f M
isc

on
fig

 S
ho

t

(b) Heatmaps of F1-score, Precision and Recall of Code-Davinci-002

Figure 4: Evaluation results under different shot combinations.

Table 7: Results on HCommon using shots from other systems, e.g., the HB. columns show results of using HBase shots for
HCommon. The HC. columns show results of using HCommon shots for HCommon.

Models
F1-score Precision Recall

File-Level (F.L.) Parameter-Level (P.L.) F.L. P.L. F.L. P.L.
HC. HB. AL. HD. YA. ZK. Avg HC. HB. AL. HD. YA. ZK. Avg HC. Avg HC. Avg HC. Avg HC. Avg

GPT-4 0.80 0.72 0.77 0.73 0.74 0.71 0.73 0.64 0.42 0.44 0.47 0.46 0.33 0.43 0.67 0.58 0.50 0.30 0.98 0.99 0.87 0.77

GPT-3.5-turbo 0.74 0.72 0.66 0.71 0.64 0.68 0.68 0.52 0.30 0.22 0.47 0.34 0.21 0.31 0.71 0.62 0.42 0.21 0.77 0.78 0.67 0.61

Code-Davinci-002 0.74 0.73 0.70 0.71 0.71 0.62 0.69 0.59 0.47 0.41 0.42 0.41 0.48 0.44 0.65 0.64 0.51 0.38 0.85 0.79 0.69 0.53

the misconfigured parameter(s) have been identified and reasoned,

as well as configuration files that are entirely valid. Our experience

suggests that prioritizing the provision of misconfiguration shots

is more crucial than supplying valid configuration shots.

When configuration data of target systems is unavailable for

few-shot learning, using configuration data from other systems as

shots could improve configuration validation effectiveness of LLMs,

compared with zero shot. Moreover, misconfigurations that may fall

into the same possible (sub-)category of violation are particularly

useful as shots. However, shots from other systems may introduce

bias, and affect the validation effectiveness.

5.3 Ineffectiveness and Difficulties

Finding 6. Under Ciri, LLMs excel at pinpointing misconfigura-
tions caused by syntax and range violations (i.e., 12 out of all 15
sub-categories of violations), with an average F1-score of 0.8 across
corresponding sub-categories. However, LLMs show limited effective-
ness in pinpointing misconfigurations caused by dependency and
version violations (i.e., 3 out of all 15 sub-categories), with an average
F1-score of 0.2 across corresponding sub-categories.

Table 9 shows the validation effectiveness of Ciri broken down

by the types of misconfigurations. The average F1-score across

systems on detecting misconfigurations due to Syntax and Range

violations is consistently above 0.5 and often reaches 0.8 for all

three state-of-the-art LLMs, with one exception in Code-Davinci-

002 on “Range: Permission” misconfigurations (an F1-score of 0.44).

Meanwhile, however, F1-score rarely exceeds 0.3 when detecting

misconfigurations due to violations in Dependency and Version.

Only GPT-4 achieves a slightly better F1-score of 0.46 in the Value

Relationship sub-category, which is still much lower than its F1-

scores in other sub-categories.

The performance difference can be attributed to the inherent na-

ture of the misconfigurations. Misconfigurations due to violations

in the Syntax and Range categories are more common in prac-

tice [101], from which LLMs have learned extensive knowledge.

In such a case, domain-specific knowledge from LLM is sufficient

to spot Syntax or Range violations. On the other hand, miscon-

figuration data from the Dependency and Version categories is

often project-specific, e.g., the example shown in Figure 5. They

are tied to detailed history and features of individual projects, thus

harder to be captured or memorized by LLMs if the LLMs have not

been heavily re-trained or fine-tuned on project-specific data. This

performance discrepancy across different misconfiguration types

exposes existing LLMs’s limitation on detecting misconfigurations

that require highly project-specific knowledge.

9

Table 9: Parameter-level F1-score by misconfiguration types from Table 2. N.A. means no evaluation samples.

Category Sub-category GPT-4 GPT-3.5-turbo Code-Davinci-002
HC. HB. AL. HD. YA. ZK. avg HC. HB. AL. HD. YA. ZK. avg HC. HB. AL. HD. YA. ZK. avg

Syntax

Data type 1.00 0.89 1.00 0.89 1.00 0.73 0.92 0.61 0.89 0.70 0.94 0.89 0.80 0.77 0.94 0.86 0.67 0.80 1.00 1.00 0.86

Path 1.00 0.80 0.80 1.00 0.89 0.67 0.85 1.00 0.86 0.43 0.55 1.00 0.89 0.74 0.50 1.00 0.75 0.75 1.00 0.75 0.79

URL 1.00 N.A. 0.00 0.80 N.A. N.A. 0.82 1.00 N.A. 0.00 1.00 N.A. N.A. 0.94 1.00 N.A. 0.00 1.00 N.A. N.A. 0.89

IP Address 1.00 0.89 1.00 1.00 1.00 0.73 0.92 0.86 0.80 0.89 1.00 0.89 0.89 0.88 1.00 0.80 0.50 0.89 0.75 0.89 0.81

Port 0.89 0.89 0.89 1.00 N.A. 0.67 0.85 0.80 0.89 0.80 1.00 N.A. 0.89 0.86 1.00 1.00 0.89 0.89 N.A. 1.00 0.95

Permission 1.00 1.00 0.57 1.00 N.A. N.A. 0.88 0.86 1.00 1.00 1.00 N.A. N.A. 0.95 1.00 1.00 0.67 0.86 N.A. N.A. 0.90

Range

Basic numeric 0.67 1.00 0.80 0.57 0.75 0.73 0.75 0.67 0.55 0.67 0.75 0.67 0.53 0.62 0.57 0.57 0.60 0.67 0.86 1.00 0.70

Bool 0.89 0.55 1.00 0.80 0.80 0.62 0.75 0.57 0.57 0.47 0.00 0.44 0.80 0.50 0.57 0.75 1.00 0.67 0.75 0.80 0.77

Enum 0.67 0.80 0.57 1.00 0.89 N.A. 0.78 0.75 0.67 0.40 0.86 0.67 N.A. 0.63 0.75 0.86 0.86 0.57 1.00 N.A. 0.81

IP Address 0.89 0.89 0.89 1.00 0.89 0.57 0.83 0.89 1.00 0.57 0.86 0.86 0.67 0.77 0.89 0.89 0.50 0.75 0.89 0.57 0.74

Port 1.00 0.86 0.86 0.67 N.A. 0.80 0.83 0.75 0.73 0.67 0.67 N.A. 1.00 0.76 0.86 0.86 0.86 1.00 N.A. 1.00 0.91

Permission 0.75 1.00 0.50 1.00 N.A. N.A. 0.82 0.50 0.00 0.57 0.86 N.A. N.A. 0.63 0.57 1.00 0.50 0.00 N.A. N.A. 0.44

Dependency Control 0.00 0.57 0.00 0.00 0.00 N.A. 0.13 0.00 0.00 0.00 0.00 0.00 N.A. 0.00 0.00 0.57 0.00 0.00 0.25 N.A. 0.18

Value Relationship 0.57 0.57 0.67 0.00 0.57 N.A. 0.46 0.00 0.40 0.44 0.00 0.29 N.A. 0.25 0.00 0.29 0.00 0.40 0.25 N.A. 0.21

Version Parameter Change 0.75 0.00 0.00 0.57 0.00 N.A. 0.27 0.20 0.00 0.00 0.00 0.00 N.A. 0.06 0.50 0.00 0.00 0.00 0.40 N.A. 0.17

<name>hbase.security.authentication</name>
<value>simple</value>
<description>Controls whether or not secure
authentication is enabled for HBase.
Possible values are ‘simple’ (no authentication),
and ‘kerberos’.</description>
...
<name>hbase.auth.key.update.interval</name>
<value>43200000</value>
<description>The update interval for
authentication tokens in milliseconds. Only used
when HBase security is enabled.</description> ...

Figure 5: Misconfiguration of Control Dependency that LLMs
cannot detect. The update interval for authentication is set
but the secure authentication is disabled.

Finding 7. LLMs show a trend of decrease in configuration val-
idation effectiveness as the number of parameters increases in the
to-be-validated configuration file.

We evaluate how the F1-score from GPT-3.5-turbo relates to the

number of configuration parameters in the validating configuration

file. We present our results in Figure 6, which indicates that con-

figuration validation becomes more challenging as the number of

parameters in the validating configuration file grows. For instance,

when the number of parameters jumps from 8 to 16, the perfor-

mance of Ciri begins to deteriorate severely. This performance

decline can be attributed to a potential information overload for

LLMs at inference time. As the complexity of the configuration file

grows, the difficulty of validating it also increases. The model may

struggle to process all the validating configuration parameters and

their relationships as more parameters are included.

Finding 8. Among the correctly identified misconfigurations, 93.6%
of the reasons from LLMs directly address the root causes of the mis-
configurations. Meanwhile, 6.4% of the reasons are misleading.

When an LLM identifies a misconfiguration from the validating

configuration file, Ciri also requests the LLM to provide explana-

tions to its judgment to aid developers in debugging the root cause

and fixing the misconfiguration (§3.1). To assess the clarity and

accuracy of these explanations, we randomly select one answer in

which the misconfiguration is correctly identified per (sub-category,

system, LLM) tuple, and collect a total of 204 answers (resulted from

2,040 queries). Upon careful manual review, we determined that

93.6% of the reasons given by the LLMs are clear and directly ad-

dress the root cause of the misconfigurations. This indicates that

LLMs can both detect misconfigurations and provide meaningful

explanations for them. 1.9% of the answers contain a mix of correct

and incorrect explanations across their queries. However, these

incorrect reasons were filtered out by the text clustering method

outlined in §3.1 because the correct reasons are dominating. Fig-

ure 7 presents an example of mixed reasons, with the second reason

being an instance of hallucination.

alluxio.underfs.gcs.default.mode=888

The property 'alluxio.underfs.gcs.default.mode' has the
value '888' which is not a valid octal number.

C
on
fig
.

A1:

The property 'alluxio.underfs.gcs.default.mode' has the
value '888' which exceeds the range of an Integer.

A2:

Figure 7: Correct and incorrect misconfig. reasons by LLMs.

Implication. With frameworks like Ciri, state-of-the-art LLMs can

effectively validate configurations for syntax or range violations.

However, they are less effective for the configurations that involve

dependencies between parameters and software versions, showing

the challenges for LLMs to reason the interactions between con-

figuration and between configuration and code [53]. To improve

the effectiveness for those misconfigurations, one can re-train or

fine-tune LLMs with data related to dependency and versions. Our

results also show that small configuration snippets are much easier

for LLMs to validate, supporting incremental, continuous config-

uration change practice which is already widely adoped in prac-

tice [16, 76]. Lastly, while LLMs often provide correct explanations

on misconfigurations that can aid debugging, it is crucial for devel-

opers to use these explanations with discretion, as they may not be

consistently accurate.

10

8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0

F-
1

Sc
or

e

HCommon
File Level
Param Level

8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0
HBase

File Level
Param Level

8 16 24 32 40 48 56 64

Number of parameters in file
0.0

0.2

0.4

0.6

0.8

1.0
Alluxio

File Level
Param Level

8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0
HDFS

File Level
Param Level

8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0
YARN

File Level
Param Level

Figure 6: Effectiveness of GPT-3.5-turbo under different number of parameters in the configuration file.

5.4 Biases in Validation Results

Finding 9. During configuration validation, LLMs more frequently
pinpoint parameters that are more popular on the Internet. When
a configuration file is entirely valid, LLMs more frequently report
false alarms on the more popular parameters. When a parameter
is misconfigured, LLMs demonstrate higher accuracy in identifying
misconfigurations on the more popular parameters.

To quantify the popularity of a configuration parameter on the

Internet, we measure the number of exact-match search results

returned by Google for a keyword and term it as G-hits.

We first study whether there is a correlation between a param-

eter’s popularity and the frequency it is reported as a false alarm

by LLMs in valid configuration files. For the configuration files

in ValidConfig dataset, we obtain the G-hits of each parameter in

each file. We then track the frequency of LLMs pinpointing the

parameter with the 𝑖𝑡ℎ highest G-hits in each file, where 𝑖 = 1...8.

Figure 8 shows the overall frequencies of the parameter with 𝑖𝑡ℎ

highest G-hits in the file being pinpointed. The smaller figures show

the overall frequencies under different shot combinations (§5.2),

the larger figure simply sums up the frequencies from the smaller

figures. Overall, the frequency distributions of being pinpointed

reveal a clear skewness towards parameters with higher G-hits.

We then study the correlation between a parameter’s popularity

and its validation accuracy. We perform similar calculations for

parameters in configuration files fromMisconfig dataset, and further
separate the cases when the misconfigured parameter is identified

versus when it is missed. We observe that the median G-hits of the

misconfigured parameters being correctly identified is higher than

the median G-hits of the misconfigured parameters being missed.

The correlations between the parameter popularity and the pa-

rameter G-hits across both datasets can be attributed to the nature

of the training data of LLMs. Training data of LLMs is often sourced

from publicly accessible domains (e.g., Common Crawl [4]), which

are easily accessible by search engines like Google. Topics or param-

eters that are popularly discussed are more likely to be memorized

by the LLMs than the less popular ones, due to more frequent

presence in the training data.

Implication. LLMs are predisposed to prioritize configuration pa-

rameters that are more frequently discussed on the internet during

the configuration validation. As a result, when employed as config-

uration validators, LLMs can effectively detect misconfigurations

in parameters that are commonly referenced online, while posing

limited capacity in validating those that are not.

6 THREATS TO VALIDITY
External. The external threats come from our evaluated LLMs and

dataset. We evaluate Ciri with five state-of-the-art LLMs that are

widely used to mitigate threats on evaluated models. To mitigate

threats from the evaluated projects, we select six mature, widely

used software systems with different types. These systems are com-

monly used in prior studies [21, 23, 66, 67, 75, 81, 105]. To account

for bias in the evaluated configuration data, we include many types

of configuration parameters and their generation rules based on

prior studies [36, 43, 44, 99] to synthesize our evaluation dataset.

Our results cannot generalize to other types of misconfigurations

(discussed in §7). We believe that the overall trend is general, but

the precise numbers could vary with other LLMs, software systems,

and configuration files in the field.

Internal. The internal threats lie in potential bugs in the implemen-

tation of Ciri, and experimental scripts for evaluation. To mitigate

such threats, we have rigorously reviewed our code and carefully

analyzed the experiment results.

Construct. The threats to construct validity mainly lie in the

metrics used in the study. We use the popular F1-score, Precision,

and Recall for our evaluations, and carefully define our confusion

matrices at both configuration file granularity and configuration

parameter granularity for misconfiguration detection.

7 DISCUSSION AND FUTUREWORK

Improving effectiveness of LLMs as validators. Despite the

promising results, using LLMs directly as configuration validators

like Ciri is only a starting point to fully leverage LLMs’ capabilities

for configuration validation. Specifically, there are circumstances

where Ciri exhibits limitations and biases (§5.3, §5.4). One of the

intricate aspects of configuration validation is understanding and

validating configuration dependencies. To address this, an initial

step can be introduced where an LLM first tries to analyze the

dependencies of the target configuration before validation. More-

over, integrating LLMs with automated configuration dependency

discovery tools [21] can be helpful. For example, tools that use

static taint analysis [21, 77] or dynamic information flow analy-

sis [11, 12] can be utilized to extract and analyze configuration

dependencies, which can then be fed as input to LLMs. This ensures

that dependencies are accurately captured for LLMs.

To further enhance the understanding of LLMs, more informa-

tion related to configurations can be incorporated, such as code

11

1st
2nd
3rd
4th
5th
6th
7th
8th

0VC+0MC 0VC+1MC 0VC+2MC 0VC+3MC 0VC+4MC 0VC+5MC 1VC+0MC

1st
2nd
3rd
4th
5th
6th
7th
8th

1VC+1MC 1VC+2MC 1VC+3MC 1VC+4MC 2VC+0MC 2VC+1MC 2VC+2MC

1st
2nd
3rd
4th
5th
6th
7th
8th

2VC+3MC 3VC+0MC 3VC+1MC 3VC+2MC 4VC+0MC 4VC+1MC 5VC+0MC

0 100 200 300 400
#Times the param is identified during evaluation

1st

2nd

3rd

4th

5th

6th

7th

8th

Pa
ra

m
 o

f i
th

 h
ig

he
st

 G
-h

its
 in

 c
on

fig

Figure 8: Frequency of the identified parameter with 𝑖𝑡ℎ highest G-hits in a configuration file. In different shot settings (sub-
figures), VC stands for a ValidConfig shot, and MC stands for aMisconfig shot.

Davinci GPT-3.5 GPT-4 Davinci GPT-3.5 GPT-4 Davinci GPT-3.5 GPT-4 Davinci GPT-3.5 GPT-4 Davinci GPT-3.5 GPT-4 Davinci GPT-3.5 GPT-4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
-h

it
s

(l
og

10
0)

HCommon HBase Alluxio HDFS YARN ZooKeeper

Figure 9: The G-hits distribution of the correctly detected misconfigurations (orange), and the G-hits distribution of the missed
misconfigurations (blue). The bars in box plots indicate medians.

comments, descriptions, change logs, and specifications. Such in-

formation can provide valuable context, which has been proven by

the prior work [22, 58, 108].

Moreover, we plan to investigate advanced prompting tech-

niques, such as Chain-of-Thoughts (CoT) prompting [83, 88, 107]. In

configuration validation context, CoT prompting can mimic the rea-

soning process a system expert might follow during the validation

process. By eliciting LLMs to generate intermediate reasoning steps

leading to the validation answer, it not only makes the validation

process more transparent but also potentially more accurate. This

step-by-step reasoning may also help in identifying and rectifying

biases in the model’s validation process.

Lastly, integrating user feedback loops can be valuable. With

user feedback on validation results, the iterative procedure can

refine LLMs over time, leading to more accurate results.

Detecting environment-related misconfigurations. While our

study primarily targets basic misconfigurations, such as syntax

and semantic violations, the validity of a configuration file can

vary across environments. For instance, a system’s configuration

might specify a file location, but the file’s existence, readability, and

format can determine its actual validity. To address these, LLMs can

generate environment-specific scripts that can be run in the context

of the environment. For example, given the configuration file as

input, the LLM can generate a Python script like the following to

validate the specified file path.

Such an approach can help identify issues like misconfigured

paths, unreachable network addresses, missing packages, or invalid

try:
with open("/path/to/file", "r") as f:
data = json.loads(f.read())
print("Valid configuration")

except:
print("Invalid configuration")

permissions. Notably, these scripts offer a lightweight alternative

to more intensive configuration tests [23, 97].

For security concern, running those checks generated by LLMs

need to be sandboxed. Moreover, the scripts can be reviewed by

humans and transformed into lightweight validators. Given the

recent success of code generation tools such as GitHub Copilot,

we believe this is a promising direction to explore. In fact, our

preliminary experiments show that, given appropriate examples,

LLMs can generate such scripts quite well.

Detecting source-code related misconfigurations. In addition

to the deployment environment, the system’s source code can also

affect the validity of a configuration. Implicit assumptions or la-

tent software bugs can create ambiguities in understanding the true

requirements of a configuration. To further illustrate this point, con-

tinuing the above example, if the documentation does not mention

that the file needs to be in JSON format, but the code expects such

a format, neither an LLM nor a human could infer this constraint

based solely on the documentation.

To detect such issues, we can leverage LLMs’ ability to reason

about code. The strategy involves presenting both the configuration

file and the relevant source code that exercises this configuration to

12

the LLM. Techniques like static or dynamic program slicing [40, 89]

can help pinpoint the relevant code blocks. The LLM can then be

tasked with distilling this code into a validator script. While this

poses a challenge, the code reasoning capability of LLMs [7, 46]

suggests that this is promising and worth further exploration.

Fine-tuning LLMs for configuration validation. Apart from
these, there is also the problem of tackling very system-specific pa-

rameters, which cannot be reasoned about based on common-sense

knowledge. This problem is further exacerbated by the fact that

software evolves constantly [104, 105] by introducing new parame-

ters and changing existing parameters to take different meanings

and constraints. This is an important problem to tackle to unleash

the full potential of LLMs for configuration validation. The most ob-

vious approach for tackling this is to fine-tune models on new data

to keep LLMs updated, but this is non-trivial, especially due to lack

of data on the newly introduced parameters. The LLM community

has found promising results in using synthetic data [30, 32, 84, 93]

for fine-tuning these models, reducing the need for large amounts

of real data. We believe that this is a promising direction to explore

for configuration validation as well.

8 RELATEDWORK
Configuration Validation. Prior studies developed frameworks

for developers to implement validators [15, 33, 65, 76] and test

cases [75, 97], as well as techniques to extract configuration con-

straints [47, 56, 99, 102]. However, manually writing validators and

tests requires extensive engineering efforts, and is hard to cover

various properties of different configurations [36, 43, 44, 96, 99].

ML/NLP-based configuration validation techniques have been in-

vestigated. Traditional ML/NLP-based approaches learn correctness

rules from configuration data [17, 41, 63, 71, 72, 80, 85, 103] and doc-

uments [64, 92] and then use the learned rules for validation. These

techniques face data challenges and rely on predefined learning

features and models, making them hard to generalize to different

projects and deployment scenarios. Complementary to prior work,

we explore using LLMs for configuration validation, which can po-

tentially address the limitations of traditional ML/NLP techniques

towards automatic, effective validation solutions.

Large Language Models for Software Engineering. LLMs have

become an exciting utility in the past few years, achieving impres-

sive performance across various tasks such as text classification,

text summarization, and logical reasoning [18, 24, 39, 79, 86]. Re-

cently, they are being actively adopted to the software engineering

domain, where they have demonstrated abilities in generating, sum-

marizing, and translating code [8, 20, 35, 45, 49, 69, 70], failure diag-

nosis [9, 22], fault localization and program repair [26, 55, 90, 91].

Large pre-trained models of coding data (LLMs for code) are also

increasingly prominent [20, 27, 28, 58, 59, 94], and have been used

for the aforementioned code-specific tasks. We take the first step to

comprehensively evaluate LLMs for configuration validation. Our

proposed framework for adopting LLMs as configuration validators,

Ciri, is general to different LLMs.

9 CONCLUSION
As a first step to harvest recent advances of LLMs such as GPT and

Codex for configuration validation, we developed Ciri as an open

platform to experiment with LLMs as configuration validators and

to analyze the promises and challenges of LLM-based validators. In

this paper, we presented our analysis of Ciri’s validation effective-

ness on five popular LLMs using configuration data of six mature,

widely deployed open-source systems. Our findings showed the

potential of using LLMs for configuration validation—Ciri demon-

strates the effectiveness of state-of-the-art LLMs as configuration

validators, achieving file-level and parameter-level F1-scores of up

to 0.75 and 0.56, respectively. We also explored the design space

of LLM-based validators in terms of prompt engineering with few-

shot learning. Despite the encouraging results, our study revealed

that directly using LLMs as configuration validators is ineffective

in detecting certain types of misconfigurations such as dependency

violations and version-related misconfigurations and induces bi-

ases to popular parameters. We discuss the open challenges which

shedding light on new, exciting research directions of the LLM-

empowered validation techniques.

REFERENCES
[1] Openctest. https://github.com/xlab-uiuc/openctest, 2020.

[2] ChatGPT. https://openai.com/blog/chatgpt, 2022.

[3] Codex. https://openai.com/blog/openai-codex, 2022.

[4] Common Crawl. https://commoncrawl.org/, 2023.

[5] GPT Base Models. https://platform.openai.com/docs/models/gpt-base, 2023.

[6] Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R.,

Yang, Z., Kulshreshtha, A., Nemade, G., Lu, Y., et al. Towards a human-like

open-domain chatbot. arXiv:2001.09977 (2020).

[7] Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W. A transformer-

based approach for source code summarization. arXiv:2005.00653 (2020).
[8] Ahmed, T., and Devanbu, P. Few-shot training LLMs for project-specific

code-summarization. In ASE (2022).

[9] Ahmed, T., Ghosh, S., Bansal, C., Zimmermann, T., Zhang, X., and Rajmohan,

S. Recommending Root-Cause and Mitigation Steps for Cloud Incidents Using

Large Language Models. In ICSE (2023).

[10] Anthropic. Introducing 100k context windows. https://www.anthropic.com/

index/100k-context-windows, 2023.

[11] Attariyan, M., and Flinn, J. Automating configuration troubleshooting with

dynamic information flow analysis. In OSDI (2010).
[12] Attariyan, Mona and Chow, Michael and Flinn, Jason. X-ray: automating

{Root-Cause} diagnosis of performance anomalies in production software. In

OSDI (2012).
[13] Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia, H., Ji, Z.,

Yu, T., Chung, W., et al. A multitask, multilingual, multimodal evaluation of

chatgpt on reasoning, hallucination, and interactivity. arXiv:2302.04023 (2023).
[14] Barroso, L. A., Hölzle, U., and Ranganathan, P. The Datacenter as a Computer:

Designing Warehouse-Scale Machines, 3 ed. Morgan and Claypool Publishers,

2018.

[15] Baset, S., Suneja, S., Bila, N., Tuncer, O., and Isci, C. Usable Declarative

Configuration Specification and Validation for Applications, Systems, and Cloud.

In Middleware (2017).
[16] Beyer, B., Murphy, N. R., Rensin, D. K., Kawahara, K., and Thorne, S. Site

Reliability Workbook: Practical Ways to Implement SRE. O’Reilly Media Inc.,

2018.

[17] Bhagwan, R., Mehta, S., Radhakrishna, A., and Garg, S. Learning Patterns

in Configuration. In ASE (2021).

[18] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models

are few-shot learners. arXiv:2005.14165 (2020).
[19] Camburu, O.-M., Shillingford, B., Minervini, P., Lukasiewicz, T., and Blun-

som, P. Make up your mind! adversarial generation of inconsistent natural

language explanations. arXiv:1910.03065 (2019).
[20] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards,

H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language

models trained on code. arXiv:2107.03374 (2021).
[21] Chen, Q., Wang, T., Legunsen, O., Li, S., and Xu, T. Understanding and

Discovering Software Configuration Dependencies in Cloud and Datacenter

Systems. In ESEC/FSE (2020).

[22] Chen, Y., Xie, H., Ma, M., Kang, Y., Gao, X., Shi, L., Cao, Y., Gao, X., Fan, H.,

Wen, M., et al. Empowering Practical Root Cause Analysis by Large Language

Models for Cloud Incidents. arXiv:2305.15778 (2023).

13

https://github.com/xlab-uiuc/openctest
https://openai.com/blog/chatgpt
https://openai.com/blog/openai-codex
https://commoncrawl.org/
https://platform.openai.com/docs/models/gpt-base
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows

[23] Cheng, R., Zhang, L., Marinov, D., and Xu, T. Test-Case Prioritization for

Configuration Testing. In ISSTA (2021).

[24] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv:1810.04805
(2018).

[25] Elazar, Y., Kassner, N., Ravfogel, S., Ravichander, A., Hovy, E., Schütze,

H., and Goldberg, Y. Measuring and improving consistency in pretrained

language models. arXiv:2102.01017 (2021).

[26] Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., and Tan, S. H. Automated

repair of programs from large language models. In ICSE (2023).

[27] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,

Liu, T., Jiang, D., et al. Codebert: A pre-trained model for programming and

natural languages. arXiv:2002.08155 (2020).
[28] Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R.,

tau Yih, W., Zettlemoyer, L., and Lewis, M. InCoder: A Generative Model for

Code Infilling and Synthesis. arXiv:2204.05999 (2023).
[29] Gunawi, H. S., Hao, M., Suminto, R. O., Laksono, A., Satria, A. D., Adity-

atama, J., and Eliazar, K. J. Why Does the Cloud Stop Computing? Lessons

from Hundreds of Service Outages. In SOCC (2016).

[30] Haluptzok, P., Bowers, M., and Kalai, A. T. Language models can teach

themselves to program better. arXiv:2207.14502 (2023).
[31] Huang, J., and Chang, K. C.-C. Towards Reasoning in Large Language Models:

A Survey. In Findings of the Association for Computational Linguistics: ACL 2023
(2023).

[32] Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and Han, J. Large

language models can self-improve. arXiv:2210:11610 (2022).
[33] Huang, P., Bolosky, W. J., Sigh, A., and Zhou, Y. ConfValley: A Systematic

Configuration Validation Framework for Cloud Services. In EuroSys (2015).
[34] Huang, Q., Wang, H. J., and Borisov, N. Privacy-Preserving Friends Trou-

bleshooting Network. In NDSS (2005).
[35] Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L. Mapping language to

code in programmatic context. arXiv:1808.09588 (2018).
[36] Keller, L., Upadhyaya, P., and Candea, G. ConfErr: A Tool for Assessing

Resilience to Human Configuration Errors. In DSN (2008).

[37] Kendrick, S. What Takes Us Down? USENIX ;login: 37, 5 (2012), 37–45.
[38] Kiciman, E., and Wang, Y.-M. Discovering Correctness Constraints for Self-

Management of System Configuration. In ICAC (2004).

[39] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language

models are zero-shot reasoners. Advances in neural information processing
systems 35, 22199.

[40] Korel, B., and Laski, J. Dynamic program slicing. Information Processing Letters
29, 3 (1988), 155–163.

[41] Le, F., Lee, S., Wong, T., Kim, H. S., and Newcomb, D. Minerals: Using Data

Mining to Detect Router Misconfigurations. Tech. Rep. CMU-CyLab-06-008,

Carnegie Mellon University, 2006.

[42] Leuschner, L., Küttler, M., Stumpf, T., Baier, C., Härtig, H., and Klüppel-

holz, S. Towards Automated Configuration of Systems with Non-Functional

Constraints. In HotOS-XVI (2017).
[43] Li, S., Li, W., Liao, X., Peng, S., Zhou, S., Jia, Z., and Wang, T. ConfVD: System

Reactions Analysis and Evaluation Through Misconfiguration Injection. IEEE
Transactions on Reliability 67, 4 (2018), 1393–1405.

[44] Li, W., Jia, Z., Li, S., Zhang, Y., Wang, T., Xu, E., Wang, J., and Liao, X. Chal-

lenges and Opportunities: An In-Depth Empirical Study on Configuration Error

Injection Testing. In ISSTA (2021).

[45] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Ec-

cles, T., Keeling, J., Gimeno, F., Dal Lago, A., et al. Competition-level code

generation with alphacode. Science 378, 6624 (2022), 1092–1097.
[46] Li, Z., Lu, S., Guo, D., Duan, N., Jannu, S., Jenks, G., Majumder, D., Green, J.,

Svyatkovskiy, A., Fu, S., et al. Automating code review activities by large-scale

pre-training. In ESEC/FSE (2022).

[47] Liao, X., Zhou, S., Li, S., Jia, Z., Liu, X., and He, H. Do You Really Know How

to Configure Your Software? Configuration Constraints in Source Code May

Help. IEEE Transactions on Reliability 67, 3 (2018), 832–846.
[48] Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Guo, R., Cheng, H., Klochkov, Y., Taufiq,

M. F., and Li, H. Trustworthy llms: a survey and guideline for evaluating large

language models’ alignment. arXiv:2308.05374 (2023).
[49] Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement,

C., Drain, D., Jiang, D., Tang, D., et al. Codexglue: A machine learning

benchmark dataset for code understanding and generation. arXiv:2102.04664
(2021).

[50] Manakul, P., Liusie, A., and Gales, M. J. F. Selfcheckgpt: Zero-resource

black-box hallucination detection for generative large language models.

arXiv:2303.08896 (2023).
[51] Maurer, B. Fail at Scale: Reliability in the Face of Rapid Change. Communica-

tions of the ACM 58, 11 (2015), 44–49.
[52] Mehta, S., Bhagwan, R., Kumar, R., Ashok, B., Bansal, C., Maddila, C., Bird,

C., Asthana, S., and Kumar, A. Rex: Preventing Bugs and Misconfiguration in

Large Services using Correlated Change Analysis. In NSDI (2020).

[53] Meinicke, J., Wong, C.-P., Kästner, C., Thüm, T., and Saake, G. On Essen-

tial Configuration Complexity: Measuring Interations in Highly-Configurable

Systems. In ASE (2016).

[54] Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and

Zettlemoyer, L. Rethinking the role of demonstrations: What makes in-context

learning work? arXiv:2202.12837 (2022).

[55] Mirsky, Y., Macon, G., Brown, M., Yagemann, C., Pruett, M., Downing, E.,

Mertoguno, S., and Lee,W. Vulchecker: Graph-based vulnerability localization

in source code. In USENIX Security (2023).

[56] Nadi, S., Berger, T., Kästner, C., and Czarnecki, K. Where do configuration

constraints stem from? an extraction approach and an empirical study. IEEE
Transactions on Software Engineering (TSE) 99 (2015), 820–841.

[57] Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S.,

Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou, T., Krueger, G.,

Button, K., Knight, M., Chess, B., and Schulman, J. Webgpt: Browser-assisted

question-answering with human feedback. arXiv:2112.09332 (2022).
[58] Nedelkoski, S., Cardoso, J., and Kao, O. Anomaly detection from system

tracing data using multimodal deep learning. In CLOUD (2019).

[59] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S.,

and Xiong, C. Codegen: An open large language model for code with multi-turn

program synthesis. arXiv:2203.13474 (2022).
[60] OpenAI. Gpt-4 technical report. arXiv:2303.08774 (2023).
[61] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. Why Do Internet

Services Fail, and What Can Be Done About It? In USITS (2003).
[62] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P.,

Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton,

F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J.,

and Lowe, R. Training language models to follow instructions with human

feedback. arXiv:2203.02155 (2022).
[63] Palatin, N., Leizarowitz, A., Schuster, A., and Wolff, R. Mining for Mis-

configured Machines in Grid Systems. In KDD (2006).

[64] Potharaju, R., Chan, J., Hu, L., Nita-Rotaru, C., Wang, M., Zhang, L., and

Jain, N. ConfSeer: Leveraging Customer Support Knowledge Bases for Auto-

mated Misconfiguration Detection. In VLDB (2015).

[65] Raab, M., and Barany, G. Challenges in Validating FLOSS Configuration. In

OSS (2017).
[66] Rabkin, A., and Katz, R. Precomputing Possible Configuration Error Diagnosis.

In ASE (2011).

[67] Rabkin, A., and Katz, R. Static Extraction of Program Configuration Options.

In ICSE (2011).

[68] Rabkin, A., and Katz, R. How Hadoop Clusters Break. IEEE Software Magazine
30, 4 (2013), 88–94.

[69] Roziere, B., Lachaux, M.-A., Chanussot, L., and Lample, G. Unsupervised

translation of programming languages. Advances in Neural Information Process-
ing Systems 33, 20601.

[70] Roziere, B., Zhang, J. M., Charton, F., Harman, M., Synnaeve, G., and

Lample, G. Leveraging automated unit tests for unsupervised code translation.

arXiv:2110.06773 (2021).
[71] Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., and Piskac, R. Synthe-

sizing Configuration File Specifications with Association Rule Learning. In

OOPSLA (2017).

[72] Santolucito, M., Zhai, E., and Piskac, R. Probabilistic Automated Language

Learning for Configuration Files. In CAV (2016).

[73] Sayagh, M., Kerzazi, N., Adams, B., and Petrillo, F. Software Configuration

Engineering in Practice: Interviews, Surveys, and Systematic Literature Review.

TSE (2018).

[74] Sherman, A., Lisiecki, P., Berkheimer, A., and Wein, J. ACMS: Akamai

Configuration Management System. In NSDI (2005).
[75] Sun, X., Cheng, R., Chen, J., Ang, E., Legunsen, O., and Xu, T. Testing

Configuration Changes in Context to Prevent Production Failures. In OSDI
(2020).

[76] Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen, Z.,

Narayanan, A., Dowell, P., and Karl, R. Holistic Configuration Management

at Facebook. In SOSP (2015).

[77] Teng Wang, Haochen He, X. L. S. L. Z. J. Y. J. Q. L. W. L. ConfTainter: Static

Taint Analysis For Configuration Options. In ASE (2023).

[78] Thakur, S., Ahmad, B., Pearce, H., Tan, B., Dolan-Gavitt, B., Karri, R.,

and Garg, S. VeriGen: A Large Language Model for Verilog Code Generation.

arXiv:2308.00708 (2023).
[79] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix,

T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al. Llama: Open and

efficient foundation language models. arXiv:2302.13971 (2023).
[80] Wang, H. J., Platt, J. C., Chen, Y., Zhang, R., and Wang, Y.-M. Automatic

Misconfiguration Troubleshooting with PeerPressure. In OSDI (2004).
[81] Wang, S., Lian, X., Marinov, D., and Xu, T. Test Selection for Unified Regres-

sion Testing. In ICSE (2023).

[82] Wang, T., Jia, Z., Li, S., Zheng, S., Yu, Y., Xu, E., Peng, S., and Liao, X. Under-

standing and Detecting On-the-Fly Configuration Bugs. In ICSE (2023).

14

[83] Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery,

A., and Zhou, D. Self-Consistency Improves Chain of Thought Reasoning in

Language Models. arXiv:2203.11171 (2023).
[84] Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., and

Hajishirzi, H. Self-instruct: Aligning language models with self-generated

instructions. arXiv:2212.10560 (2023).
[85] Wang, Y.-M., Verbowski, C., Dunagan, J., Chen, Y., Wang, H. J., Yuan, C.,

and Zhang, Z. STRIDER: A Black-box, State-based Approach to Change and

Configuration Management and Support. In LISA (2003).

[86] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama,

D., Bosma,M., Zhou, D., Metzler, D., et al. Emergent abilities of large language

models. arXiv:2206.07682 (2022).
[87] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.,

Le, Q., and Zhou, D. Chain-of-Thought Prompting Elicits Reasoning in Large

Language Models. arXiv:2201.11903 (2023).
[88] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou,

D., et al. Chain-of-thought prompting elicits reasoning in large language

models. Advances in Neural Information Processing Systems 35 (2022), 24824–
24837.

[89] Weiser, M. D. Program Slices: Formal, Psychological, and Practical Investiga-
tions of an Automatic Program Abstraction Method. PhD thesis, USA, 1979.

AAI8007856.

[90] Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang, L. Universal

fuzzing via large language models. arXiv:2308.04738 (2023).
[91] Xia, C. S., Wei, Y., and Zhang, L. Automated Program Repair in the Era of

Large Pre-Trained Language Models. In ICSE (2023).

[92] Xiang, C., Huang, H., Yoo, A., Zhou, Y., and Pasupathy, S. PracExtractor:

Extracting Configuration Good Practices from Manuals to Detect Server Mis-

configurations. In ATC (2020).

[93] Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., and Jiang, D.

Wizardlm: Empowering large language models to follow complex instructions.

arXiv:2304.12244 (2023).
[94] Xu, F. F., Alon, U., Neubig, G., and J.Hellendoorn, V. A Systematic Evaluation

of Large Language Models of Code. arXiv:2202.13169 (2022).

[95] Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., and Talwadker, R. Hey,

You Have Given Me Too Many Knobs! Understanding and Dealing with Over-

Designed Configuration in System Software. In ESEC/FSE (2015).

[96] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S. Early

Detection of Configuration Errors to Reduce Failure Damage. In OSDI (2016).
[97] Xu, T., and Legunsen, O. Configuration Testing: Testing Configuration Values

as Code and with Code. arXiv:1905.12195 (2019).
[98] Xu, T., and Marinov, D. Mining Container Image Repositories for Software

Configurations and Beyond. In ICSE-NIER (2018).

[99] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., and

Pasupathy, S. Do Not Blame Users for Misconfigurations. In SOSP (2013).

[100] Xu, T., and Zhou, Y. Systems Approaches to Tackling Configuration Errors: A

Survey. ACM Computing Surveys 47, 4 (2015).
[101] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy,

S. An Empirical Study on Configuration Errors in Commercial and Open Source

Systems. In SOSP (2011).

[102] Zhang, J., Piskac, R., Zhai, E., and Xu, T. Static Detection of Silent Misconfig-

urations with Deep Interaction Analysis. In OOPSLA (2021).

[103] Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T., and Zhou,

Y. EnCore: Exploiting System Environment and Correlation Information for

Misconfiguration Detection. In ASPLOS (2014).
[104] Zhang, S., and Ernst, M. D. Which Configuration Option Should I Change?

In ICSE (2014).

[105] Zhang, Y., He, H., Legunsen, O., Li, S., Dong, W., and Xu, T. An Evolutionary

Study of Configuration Design and Implementation in Cloud Systems. In ICSE
(2021).

[106] Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang, X., Zhao, E., Zhang,

Y., Chen, Y., et al. Siren’s Song in the AI Ocean: A Survey on Hallucination in

Large Language Models. arXiv:2309.01219 (2023).
[107] Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic chain of thought

prompting in large language models. arXiv:2210.03493 (2022).
[108] Zhang, Z., Zhang, A., Li, M., Zhao, H., Karypis, G., and Smola, A. Multimodal

chain-of-thought reasoning in language models. arXiv:2302.00923 (2023).
[109] Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D.,

Christiano, P., and Irving, G. Fine-tuning language models from human

preferences. arXiv:1909.08593 (2019).

15

	Abstract
	1 Introduction
	2 Exploratory Examples
	3 Ciri: A LLM-empowered Configura- tion Validation Framework
	3.1 Prompt Engineering
	3.2 Result Generation
	3.3 Ciri Configuration

	4 Benchmarks and Metrics
	5 Evaluation and Findings
	5.1 Validation Effectiveness
	5.2 Impacts of Few-shot Learning
	5.3 Ineffectiveness and Difficulties
	5.4 Biases in Validation Results

	6 Threats To Validity
	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	References

