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Abstract
The ever-increasing demand for generative artificial intelligence
(GenAI) has motivated cloud-based GenAI services such as Azure
OpenAI Service and Amazon Bedrock. Like any large-scale cloud
service, failures are inevitable in cloud-based GenAI services, result-
ing in user dissatisfaction and significant monetary losses. However,
GenAI cloud services, featured by their massive parameter scales,
hardware demands, and usage patterns, present unique challenges,
including generated content quality issues and privacy concerns,
compared to traditional cloud services. To understand the produc-
tion reliability of GenAI cloud services, we analyzed production
incidents from a leading GenAI cloud service provider spanning
in the past four years. Our study (1) presents the general charac-
teristics of GenAI cloud service incidents at different stages of the
incident life cycle; (2) identifies the symptoms and impacts of these
incidents on GenAI cloud service quality and availability; (3) uncov-
ers why these incidents occurred and how they were resolved; (4)
discusses open research challenges in terms of incident detection,
triage, and mitigation, and sheds light on potential solutions.

1 Introduction
In recent years, there have been significant advancements in gener-
ative artificial intelligence (GenAI), particularly in Large Language
Models (LLMs) and their applications across various fields. Beyond
natural language processing, these models have also shown new
capabilities in image recognition [22, 49], data analysis[39, 57], soft-
ware engineering [10, 27, 28], and more [35, 41, 53]. The emergence
of models like the GPT-4 family marks a new era, with capabilities
extending to complex reasoning [42, 52], creative thinking [33, 64],
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and even surpassing human expertise in certain tasks [6]. This in-
novation has resulted in impactful research findings and practical
applications with substantial implications for scientific research
and socio-economic development.

The demands of GenAI come with the requirements of unprece-
dented computational resources, including the hardware for operat-
ing the models as well as infrastructure systems for efficiently allo-
cating and utilizing such resources [37]. However, both the acquisi-
tion of the required resources and their efficient management pose
significant challenges to individuals and even enterprises. There-
fore, it motivates the development of GenAI cloud services, which
offer a platform where developers and users can create, deploy, and
utilize large models without substantial hardware and software
investments, e.g., Cloud for AI (Cloud4AI), and also incorporate
model APIs within cloud systems, e.g., AI for Cloud (AI4Cloud)
[10, 27, 28]. Popular GenAI cloud services include Azure OpenAI ,
Amazon Bedrock, IBMWatson, and Anthropic Claude. GenAI cloud
services afford enterprises the infrastructure necessary for the de-
ployment and maintenance of GenAI models, based on which users
can further interact, analyze, and fine-tune such models. Moreover,
they are crucial in promoting collaboration among researchers by
providing shared access to advanced models and computational
resources.

As with any large-scale cloud services, GenAI cloud services
are not immune to occasional incidents. These events, while of-
ten unavoidable due to the complexity and scale of the systems
involved, have the potential to impact user experience and, in some
cases, result in challenges such as user dissatisfaction or economic
implications. For example, OpenAI recently experienced an inci-
dent where request failures and high latency severely impacted
ChatGPT’s API and functionalities [1]. However, despite the crit-
ical importance of reliability in GenAI cloud services, there is a
notable lack of research focusing on their reliability and incident
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management. Therefore, understanding the characteristics of these
incidents—including detection, triage, diagnosis, and mitigation—is
crucial for enhancing the quality of GenAI cloud services.

Before the era of GenAI cloud services, traditional ML plat-
forms like AzureML, AWS SageMaker, and Google Cloud ML were
primarily used for tasks such as training, inference, and model
fine-tuning [48]. These services have been well-studied for issues
like deployment challenges, fault taxonomy, and bug characteris-
tics [12, 24, 25], while extensive research has similarly examined
incident management practices, root causes, and triage procedures
in conventional cloud services [7, 10, 14, 18, 20, 32, 44]. However,
GenAI cloud services fundamentally differ from these. Specifically,
GenAI services such as large language models (LLMs) rely on mas-
sive parameter scales, high hardware demands, and provide natural
language-driven applications like text generation, summarization,
and translation, which traditional cloud services do not [31, 38].
These services also allow users to fine-tune models using user-
uploaded datasets [2], exposing risks from model-level behavior
changes. Moreover, they provide intuitive conversational user inter-
faces, making them accessible to a broader audience while adding
complexity and risks in managing user interactions. Such char-
acteristics create new reliability issues related to model quality,
privacy, and performance, layered atop conventional reliability con-
cerns. Therefore, due to the distinctive challenges of GenAI cloud
services, it is necessary to investigate GenAI incident patterns, im-
pacts, and mitigation strategies to ensure future dependable and
reliable GenAI services.

In this study, we examine incidents in the GenAI cloud service of
Microsoft, a leader in the GenAI field, known for hosting GPT series
models.Microsoft’s IncidentManagement system (IcM) documents a
wide range of incident data, including root causes, mitigation steps,
and detailed engineer discussions, enabling a comprehensive and
comparative analysis of GenAI cloud service incidents alongside
conventional cloud services. Our investigation reveals that while
some traditional reliability challenges, such as system downtime or
latency issues, remain relevant in GenAI services, new and unique
challenges have emerged. For example, incidents like response
quality degradation show that models can unexpectedly produce
low-quality or even inappropriate output from simple prompts. We
term these incidents GenAI incidents in this study.

Our study leads to crucial findings. For instance, we find that (1)
GenAI incidents manifest as performance degradation (49.8%), de-
ployment failure (35.7%), and invalid inference (14.5%), significantly
impacting both service reliability and user satisfaction; (2) GenAI
cloud services experience a higher rate of incidents detected by
humans (38.3%) compared to other services (13.7%) rather than au-
tomated monitors. Also, there is a higher false alarm rate for GenAI
(11.0%) versus other services (3.8%); (3) Due to human-reported
nature, many GenAI incidents need to be re-assigned to different
teams, and GenAI incidents need more time (1.12 time units on
average) to mitigate compared to those in other services (0.65 time
units on average); (4) During mitigation, a specific root cause is not
tied to a single type of fix. For example, while code bugs account for
21.5% of the GenAI incidents, only 7.6% of fixes are code changes,
with other strategies being employed. Given the tight deadlines for
on-call engineers, quick approaches like rollback are prioritized to
reduce downtime.
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Figure 1: Incident management of GenAI cloud services.

In summary, this paper makes the following main contributions:
• We make the first attempt to unravel the general behavior of
incidents occurring in GenAI cloud services by collecting and
analyzing a large number of GenAI-related incidents from Mi-
crosoft1.

• We identify not only the symptoms and impacts of high severity
GenAI incidents but also uncover the root causes behind them
and how they were mitigated with many real-world incident
cases.

• We reveal the challenges of handling GenAI incidents at differ-
ent incident life cycles and provide insights into improving the
reliability of large-scale GenAI cloud services.

2 Background and Motivation
In this section, we begin by introducing Large Language Model
(LLM) cloud services and incident management, as illustrated in
Figure 1. Subsequently, we outline the motivation behind our study.

2.1 GenAI Cloud Service
With the substantial parameter scale of foundation models such
as GPT-4, they are typically deployed in cloud systems like Azure
OpenAI. This Cloud4AI service offers users a convenient means to
access advanced language models without the complexities of man-
aging infrastructure or undertaking extensive local computations.
GenAI also has APIs for cloud services, as seen with Copilot [3],
referred to as AI4Cloud. In our study, both Cloud4AI and AI4Cloud
are the subjects of our investigation, which we collectively refer
to as GenAI cloud services. In our study of GenAI cloud services’
incidents (termed as GenAI incidents), we collect incident data from
the Microsoft Incident Management system (IcM) [13] (Section 3).

2.2 Incident Management
In cloud services, incidents are common and can lead to service
disruptions, economic losses, and other unexpected severe conse-
quences. To address such issues, major cloud providers likeMicrosoft
typically involve four main procedures: detection, triage, diagnosis,
and mitigation (Figure 1).
• Detection. This step detects service violations or performance
issues and creates a ticket to record relevant information [23, 30,
36, 40, 54, 55, 58, 62]. Such incidents can be detected manually

1Due to company policy, we hide the actual numbers and present normalized numbers
in this paper.
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Figure 2: Number of GenAI incidents at different time.

(e.g., by customers or engineers) or automatically (e.g., by the
service monitor) [23, 30, 36, 40, 54, 55, 58, 62].

• Triage. This process assigns the detected incident to a responsi-
ble team [5, 8, 9]. Due to the complexity of cloud service systems,
determining the appropriate team may require multiple rounds
of discussions, and reassignment is also necessary.

• Diagnosis. The assigned team analyzes the incident to deter-
mine its root cause by examining system logs and configuration
settings to isolate the problem and identify corresponding fac-
tors [28, 29, 45, 51, 59–61].

• Mitigation. Themitigation step often accompanies the diagnosis,
as engineers strive to promptly resolve the incident to minimize
the Time to Mitigate (TTM) [4, 26].

2.3 Motivation
GenAI, especially LLMs such as OpenAI’s ChatGPT, has witnessed
a surge in their popularity, with ChatGPT having over one mil-
lion users in its debut week. However, such increased adoption
has also unveiled potential risks, including outages, and errors.
Figure 2 showcases the variation in terms of the number of GenAI-
related incidents within Microsoft over the recent four years, also
highlighting changes in the number of incidents across different
severity levels. The lower the severity level, the higher the impact
to customers.

The total number of incidents in gray color shows an upward
trend. Specifically, before the release of the GPT-3.5 model in March
2022, GenAI-related incidents account for a mere 3% of the total
incidents within the GenAI cloud service. After 2023, there is a
significant increase in incidents, with a pronounced spike following
the introduction of GPT-4 in March 2023. At this point, the volume
of incidents had increased nearly tenfold relative to the figures
reported during the GPT-3.5 era. This dramatic rise can be attributed
to the global fame attained by the GPT model, which attracted
millions of users worldwide. This trend also holds across all severity
levels, with lower-impact incidents constituting most cases.

The proliferation of GenAI-related incidents affects both the
associated cloud services and their end users. Unfortunately, the
characteristics of the incidents of GenAI cloud services have not yet
been comprehensively unveiled. This study aims to bridge this gap,
thus providing insights for future research and practical guidance
for the software engineering community maintaining GenAI cloud
services.

3 Methodology
Microsoft, a leader in cloud computing, hosts the training and APIs
for OpenAI and offers various GenAI cloud services, includingAzure
OpenAI, which utilizes Microsoft platform to provide access to the
GPT series models. Incidents in these services are documented in a
dedicated database. Prior researches [20, 32, 44, 63] have utilized
this database to collect incidents and derive analytical insights.
Consistent with this approach, this study leverages Microsoft’s
database to collect GenAI-related incidents.

The database contains key details for each incident, including
its description, root cause, mitigation steps, discussions by the on-
call engineers (OCEs), and severity-level tags (high, medium, and
low). To conduct our empirical study, we collect both GenAI-related
and non-GenAI incidents as a comparative dataset. Following the
methodology of previous research [20], we focus on significant
incidents characterized by their high severity and detailed root
cause descriptions, thereby facilitating an insightful qualitative
analysis. The following shows the details of our methodology.

3.1 Data Collection
We first introduce the detailed procedures to collect the dataset. In
particular, we collect two datasets that serve for the two incident
study respectively. The general incident study is designed to explore
general characteristics of GenAI incidents within the incident man-
agement process, such as the distribution of incidents’ detection
methods. It also aims to compare these incidents with those from
other cloud services, analyzing the differences between the two. It
requires a dataset with broad coverage. Therefore, we endeavor to
collect all incidents that meet the criteria as comprehensively as
possible. The in-depth incident study focuses on understanding the
categories of an incident’s symptoms, root cause, and mitigation
strategies based on detailed information, such as discussions by
OCEs. Given the large volume of data, we opt to select only high-
severity incidents as in-depth analysis cases, as these incidents
have a more significant impact on the system and tend to attract
greater attention. Through both the study, we can comprehensively
understand the characteristics of GenAI incidents.
•GenAI incidents collection for general analysis. In this phase,
our primary goal is to gather data on incidents, encompassing the
period from June 2020, following the release date of GPT-3 model
by OpenAI, to February 2024. Here are the criteria we use to collect
GenAI-related incidents:
(1) We choose incidents that have been mitigated or resolved. The

incident status is categorized within the “Status” field as “Ac-
tive”, “Mitigated”, and “Resolved”. Our collection excludes in-
cidents marked as “Active” due to the lack of comprehensive
data, such as discussions by OCEs, root cause analysis, and
mitigation steps;

(2) The “Service” field indicates whether the incident is associated
with a GenAI cloud service and its team or not. Incidents are
considered GenAI-related if they are linked to a specific GenAI
cloud service, such as Azure OpenAI ;

(3) Given the complex architecture and dependencies of GenAI
cloud services, certain GenAI incidents may be managed by
dependent (sub-)services and cannot be directly found by “Ser-
vice”. Thus, we define a vocabulary of words related to GenAI
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(e.g., “OpenAI”, “GPT”, “LLM”, et.al). Then we perform a case-
insensitive search of these terms within the “Title” of an inci-
dent.
Following these criteria, we obtain hundreds of thousands of

GenAI-related incidents.
• GenAI incidents collection for in-depth analysis. We metic-
ulously select a subset of GenAI incidents based on three criteria:
(1) The incident must be of high severity. Incidents of this nature

typically result in significant service disruptions, affecting nu-
merous tenants and customers;

(2) The incident should include a detailed root cause analysis;
(3) The incident must be valid. We deem an incident as invalid if

its mitigation steps are described as a “False Alarm”.
Following these criteria, we identified and selected many inci-

dents for our detailed analysis. Given that high-severity incidents
inherently constitute a smaller proportion of total incidents, the
data collected at this step is significantly less than what is gathered
for qualitative analysis.
• Other incidents collection. For discussion, especially a com-
parative mitigation analysis between GenAI incidents and those
unrelated to GenAI, we collect the same number of other incidents
using the same time frame and criteria in general analysis (omitting
the (2) and (3)) and in-depth analysis.

3.2 Research Questions
In this study, we aim to reveal the behaviors of GenAI incidents in
the incident management life cycle. Such insights are critical for
the development, maintenance, and management of LLMs, aiming
to improve the robustness and reliability of the LLM cloud systems.
This exploration is pivotal for providing a scientific basis to prevent
future incidents, thereby contributing valuable knowledge and ex-
perience to both the research and practical applications in the field.
In particular, we design the following research questions (RQs).
RQ1. What is the general behavior of GenAI incidents in terms of
different incident life cycles?
RQ2. What are the symptoms of GenAI incidents?
RQ3. What are the root causes of GenAI incidents?
RQ4. How are GenAI incidents mitigated?

3.3 Categorization Strategy
While each incident is documented with detailed information, these
records are typically composed by humans, e.g., OCEs’ discussion,
and may contain images, URLs, and other elements that complicate
automatic categorization. Therefore, we need to analyze all the
incidents manually to further understand their symptoms, root
causes, and mitigation strategies.

We divide our dataset of incidents into three subsets randomly:
(1) taxonomy set: 40% incidents, (2) validation set: 20% incidents,
and (3) test set: 40% incidents. Firstly, two authors independently
following the open coding strategy [43] to label both symptoms,
root causes and mitigation strategies for the taxonomy set. Next,
for categories with inconsistent classifications, a meeting involving
other authors will be convened to determine the final categoriza-
tion. The two authors then label the validation set to check for
the emergence of new categories to perform further discussions to

refine their understanding of each category. Finally, they label the
test set and employ Cohen’s kappa [15] coefficient to measure the
consistency between annotators.

After multiple rounds of the labeling process described above, we
ultimately adopt the best result, achieving near-perfect agreement
across the three taxonomies: Symptom: 0.921, Root Cause: 0.930,
Mitigation: 0.893. For incidents that can fit into multiple categories,
e.g., multiple symptoms, disagreements are resolved by focusing on
the category most prominently reflected in the incident and OCE’s
discussions.

3.4 Threats to Validity
Internal threat. Subjectivity may occur during manual labeling
as an internal threat. To mitigate this threat, our study go through
multiple rounds involving independent labeling, meetings to dis-
cuss categorization, and the calculation of Cohen’s kappa [15]. We
ultimately select the round of labeling that is near-perfect as our
final result, which demonstrates the highest consistency.
External threat. All incidents we collect come from Microsoft’s
cloud systems. Given that Microsoft employs various effective tools
and techniques to eliminate bugs and deploys multiple automated
tools to mitigate some incidents before they impact customers, the
incidents we collect may not fully represent the behavior of other
GenAI cloud services. We plan to perform a larger scale evaluation
of GenAI cloud services from different companies in the future.

4 RQ1: General Statisitcs
We explore the characteristics of GenAI incidents from three as-
pects, detection, triage, and mitigation, each corresponding to a
phase of the incident life-cycle.

4.1 Incident Detection
Detection is the initial step in incident management for a cloud ser-
vice. Engineers can identify incidents by noticing unusual system
behaviors [7, 11, 46, 56], while customers can also report issue tick-
ets when encountering failure messages or experiencing delay [21].
To improve the efficiency of incident detection, automated moni-
toring tools are deployed [62]. These tools either passively collect
real-time system telemetry data (e.g., CPU usage) and performance
measures (e.g., response time and throughput), or proactively check
the health of the system by periodically performing heartbeats or
sanity checks. Figure 3 shows a monitor detecting the calling failure
rate of a service.
Missing Alarms (False Negative): As shown in Figure 4, we
find that 38.3% of the incidents related to GenAI are reported by
humans, such as engineers and customers, instead of automated
incident monitors. To explain this high human-reported percent-
age (i.e., such a ratio is only 13.7% for other cloud services, as will
be further discussed in Section 8.1) , we find that 45.9% of GenAI
cloud services are still under development or in the preview stage,
while 54.1% of GenAI cloud services are in the General Availability
status. Moreover, many GenAI cloud service monitors currently
build on adaptations of existing frameworks designed for other
types of cloud services, which may not yet fully align with the
unique requirements of GenAI-specific scenarios. For instance, in-
valid inference incidents are often identified and reported by users,
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Title: monitor evaluated high fail rate for
scope [ServiceA], zone [WestRegion2]
Monitor Name: [Service]_FailRate
Metric: DependencyCallCounter
Description: Marks the target as ‘Unhealthy’
and raises a high-severity incident if the
failure rate exceeds 4% over the past 60
minutes.
Trouble-shooting Guide: [Link to the TSG]
Diagnostic Information:
Failure Description Count
ServiceClient failure for
[ServiceB]: Failed to call
[ServiceB], ReasonPhrase=Failed
Dependency

52

RequestTimeout for [EncoderService] 13

ServiceClient failure for ChatGPT:
No service for ‘BotClientLibrary’
has been registered.

8

ServiceClient failure for ChatGPT:
Failed to call ‘ChatGPT’ at
LoadBalancer, ErrorStatusCode=400

3

ClientSecretCredential
authentication failed: A
configuration issue is preventing
authentication. Details: The
provided client secret keys for app
[ApplicationA-UUID] are expired.

6

... ...

Figure 3: Incident detected by a monitor and the collected
diagnostic information attached to the monitor.

38.3%

61.7%

Human Monitor

(a) Detection type.

36.9%

9.0%

54.1%

Dev Preview GA

(b) Service stage.

Figure 4: GenAI incident detection type and different stages
of GenAI services. GA: General Availability, Dev: Develop-
ment.

reflecting the collaborative effort to refine these systems further.
Our study observes that there are around 25.9 unique monitors
per 100 monitor-reported GenAI incidents, compared to 74.4 for
other cloud services, offering an opportunity to enhance monitor-
ing diversity. These insights highlight the ongoing evolution of

90.7%

8.6%
0.7%

Monitor
85.7%

11.1%
3.2%

Human

Hop=1 Hop=2 Hop>=3

Figure 5: Transfer hops for incidents.

GenAI monitoring approaches, as the industry continues to refine
automated detection capabilities and improve response efficiency.
Wrong Alarms (False Positives): The false alarm rate for inci-
dents detected by monitors in GenAI services is notably high at
11.0% (Table 1 in Section 8.1), compared to the 6.6% detected by hu-
mans. This higher false positive rate is primarily from the sensitivity
of the monitoring systems. For example, the monitor in Figure 3
issues an incident report if the failure rate exceeds 4% within one
hour. If the failure rate threshold is set lower or the monitoring
period is shortened, the monitor becomes more sensitive, possibly
leading to more false positives. These false alarms burden engineers
with unnecessary investigations, thus delaying the resolution of
true incidents.

Finding 1. GenAI cloud services and their monitoring are still in
an early stage. A high percentage (38.3%) of GenAI incidents are
reported by humans. Besides, among the incidents detected by the
automated monitors, there is an 11.0% false alarm rate, which points
to opportunities for further enhancement in monitoring precision.

4.2 Incident Triage
Triage is a crucial component of the incident management life cycle,
significantly affecting the Time-to-Mitigate (TTM) [7]. Incidents
can be sent to incorrect teams or need collaborative efforts, leading
to cases where they are re-assigned between different teams. The
process of reassigning an incident from one team to another is
called a transfer hop.

As shown in Figure 5, incidents that are initially detected by
monitoring systems are usually accurately triaged to the correct
team on their first attempt (90.7%). However, the proportion of
incidents needing triage increases when detected by humans. GenAI
incidents detected by humans that undergo reassignment is 14.3%.
This shows the effectiveness of using automatic monitors for triage.
For example, the monitor-generated ticket title embeds the name
of the service that leads to the incident, as shown in Figure 3, so
the incident can be accurately triaged to the service team. Another
factor for the incident re-assignment is the interdependency on
other services. Resolving an incident might exceed the capabilities
of a single team, and collaborative efforts across different service
domains are needed. Further details on the root causes of GenAI
incidents will be elaborated in Section 6.
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Figure 6: TTM distribution across different factors: Y-axis
is the normalized TTM of all incidents; the top whisker of
each box plot represents the maximum value; the top and
bottom edge of the box represent the upper quartile and
the lower quartile, respectively, and the line inside the box
represents the median value. (a) Different severity levels; (b)
The presence of a TSG; (c) Detection types.

4.3 Incident Mitigation
Intuitively, we would expect incidents with higher severity to have
longer TTM, as these incidents usually require more extensive
investigation and resolution efforts. For example, as shown in Fig-
ure 6a, high-severity incidents generally take longer to resolve than
medium-severity. However, low-severity incidents exhibit a sig-
nificantly longer TTM compared to other severity levels because
these lower-priority GenAI incidents often remain unresolved for
extended periods due to their low impact.

Incidents accompanied by a TSG are resolved more swiftly than
those without one, as TSGs provide clear guidelines and solutions
that facilitate faster mitigation (Figure 6b). Furthermore, our anal-
ysis reveals that incidents generated by monitors are mitigated
more quickly than those reported by humans (Figure 6c). This is
partly because monitors, as illustrated in Figure 3, often include
links to corresponding TSGs. By following the TSG instructions,
diagnostic information is more readily collected. For example, it
becomes immediately clear that the root cause of the incident in
Figure 3 is expired secret keys of the application, thereby enabling
quicker resolution.

Finding 2. Automatic monitors and trouble-shooting guides
(TSGs) can significantly boost the mitigation process, and reduce
the Time to Mitigation for GenAI incidents.

5 RQ2: Symptom of GenAI Incidents
Weanalyze the symptoms of GenAI incidents from available incident-
related telemetry data (metrics, logs, traces, etc.) and discussion
threads from on-call engineers. We categorize the symptoms into
invalid inference, deployment failure, and degraded performance.
Note that one incident may havemultiple symptoms, and we choose
the major symptom as its category as mentioned in Section 3.3. The
following subsections are ordered based on their perceived impact
on service operation and user experience.

5.1 Invalid Inference (14.5%)
While the model inference executes successfully and the service
returns results to clients without errors, the model output can be
invalid. Inaccuracies in the output directly affect the core function-
ality of GenAI services. (1) Response Quality Degradation (10.7%):
Models can generate low quality content with even simple user
prompt. Another scenario involves the generation of invalid con-
tent, where the model could not understand the user’s prompt,
leading to invalid content creation [47]; (2) Prompt/Response Con-
tent Filter Malfunction (3.8%): GenAI cloud services deploy policy
filters for both user prompts and model responses to prevent the
generation of harmful content. However, these content filters can
sometimes malfunction, resulting in inappropriate or harmful con-
tent from the model, as well as false alarms that incorrectly filter
out valid prompts or responses.

5.2 Deployment Failure (35.7%)
Deployment failures reflect the impact on GenAI service continu-
ity. We find: (1) Model deployment failure (12.0%): When users are
training or fine-tuning large language models, the deployment fail-
ure may happen. For instance, all of the user fine-tuned models
were not successfully deployed in time for a specific deployment
region; (2) Resource deployment failure (14.4%): GenAI cloud ser-
vices heavily depend on different types of resource deployment,
like computing, networking and storage resources for consuming,
transmitting and storing vast volumes of data. Failed deployment of
these can propagate exceptions to other parts of the GenAI services;
(3) Fine-tune API failure (9.3%): GenAI cloud services offer interfaces
for uploading/downloading data, model selection, and parameter
setting, which users can customize to fine-tune their own models.
However, a failure may happen when calling such fine-tune REST
APIs. For instance, a conflict version requirement caused the failure
of the fine-tune API calls.

5.3 Degraded Performance (49.8%)
There are two typical performance degradation: (1) Service-level
Degradation (27.2%): Multiple APIs within a GenAI service can fail
simultaneously, impacting the overall availability and performance
of that service. Also, if multiple service nodes become unhealthy,
e.g., out-of-memory or disk pressure, the performance of the whole
service can be influenced; (2)API-level Degradation (22.6%): A partic-
ular GenAI API can be delayed. Degraded performance is primarily
due to infrastructure and configuration issue as discussed in Sec-
tion 6.

Finding 3. GenAI incidents can occasionally include challanges,
including invalid inference (14.5%), deployment failure (35.7%), and
performance degradation (49.8%).

6 RQ3: Root Cause
We categorize the root causes of GenAI incidents into five distinct
types. The relationships between symptoms and root causes are
shown in Figure 7. Each cell represents the percentage of a specific
symptom associated with a particular root cause. We can observe
that a single symptom can come from multiple root causes rather
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Figure 7: Relationships between symptom and root cause.

than a simple one-to-one relationship. This indicates that diagnos-
ing the root cause from symptoms is not straightforward.

6.1 Infrastructure Issue (27.2%)
GenAI cloud services are built upon a complex hierarchical infras-
tructure comprising VMs, nodes, clusters, and data centers that
host tightly coupled resources, including CPU, memory, storage,
and networks. We find that infrastructure issues are a major cause
of degraded performance and deployment failure (Figure 7). The
infrastructure is categorized into the following types: (1) Infrastruc-
ture Maintenance Issues (17.8%): Failures of hardware components,
such as worn-out GPUs, can impact the fine-tuning and inference of
GenAI services. For instance, faulty GPUs can process requests in-
correctly, resulting in errors such as gibberish outputs. (2) Network
Issues (4.7%): Besides the network bandwidth, incidents can happen
between the communication of VMs and nodes within clusters,
including connectivity issues and DNS resolution failures. Such net-
work problems can severely disrupt the performance and reliability
of the service. (3) Storage Issues (4.7%): The management of vast
amounts of data needs robust storage solutions. Failures in data
storage or IO operations, such as data corruption or delays, can
lead to service disruptions.

Finding 4. Infrastructure issues are a key area of focus for under-
standing and addressing incidents in GenAI cloud services, espe-
cially for degraded performance and deloyment failure. To meet the
growing user demands, GenAI cloud services should not only scale
up the size of GPU cluster but also prioritize robust infrastructure
management.

6.2 Configuration Issue (24.5%)
GenAI cloud services rely on amultitude of configuration settings to
ensure the seamless operation of their interconnected components.
However, mismanagement of these configurations is occasionally
observed. Incorrect or unsynchronized settings can ruin service
functionality. We categorize these configuration issues into the
following types: (1) Misconfiguration (13.1%): Operators may em-
ploy incorrect configurations or commit errors, typically due to
human mistakes. For example, engineers might configure much
fewer model instances than required during system maintenance,
leading to an outage of degraded performance. (2) Configuration
Update (6.4%): Changes in one cloud component’s configurations
can lead to incompatibilities with other components due to the

configuration dependencies among them. Additionally, version con-
flicts for the same configuration may result in one configuration
overriding another, e.g., using a removed parameter in its latest ver-
sion or using an added parameter in its previous version, leading to
malfunctions. (3) Configuration Missing and Gaps (5.0%): Missing or
disabled configurations can disrupt normal operations. Additionally,
certain configurations impose range restrictions on values, such
as timeout thresholds or maximum sizes for prompt tokens. Under
unexpected circumstances, such as a sudden surge in user traffic,
these static configurations can constrain system performance.

6.3 Code Bug (21.5%)
Code bugs are a primary cause of incidents, and a prior work [32]
has specifically investigated the code bugs leading to cloud inci-
dents. The following shows four types of code bugs for GenAI inci-
dents: data constraints bugs, content filter bugs, exception handling
bugs, and cross-system bugs. (1) Bugs violating Data Constraints of
the Model (6.7%): Bugs can arise due to inadequate validation for
data format or missing data that the model needs to consume. Take
a fine-tune failure as an example, it can be caused by the lack of vali-
dation on dataset format in FileUploadAPI. The malformed dataset
was not rejected during the file upload stage, and was delivered to
the backend services; (2) Prompt/Response Content Filter Bugs (2.2%):
Code defects can exist in the prompt or response filter. (3) Exception
Handling Bugs (6.3%): Exceptions are a normal occurrence during
code execution. However, the code can be unable to effectively han-
dle certain exceptions or failures. For example, errors may occur
during model deployment, such as an invalid model being deployed
to an endpoint. Due to a code defect in processing such an error,
e.g., simply swallowing the exception, the invalid model remains
there and serve requests; (4) Cross-system Bugs (6.3%): These bugs
are mostly caused by issues in the code across multiple components.
To fix this type of bugs, changes are needed for multiple services.

6.4 External Usage Issue (14.1%)
Incidents can arise from incorrect usage of GenAI service by the
customer. For example, a customermissed indexeswhen performing
queries to LLM, which caused the high CPU usage in the service.

6.5 Operation Error (12.7%)
Operation errors in GenAI cloud services are typically caused by
human errors during the management and operational processes.
This error occurs when operators mistakenly introduce erroneous
or outdated dependencies, or use expired credentials.

7 RQ4: Mitigation
To answer RQ4, we delve into the common categories of mitigation
strategies utilized to address GenAI incidents. Specifically, we in-
spect the title and the detailed description of the mitigation steps
in each incident ticket and its corresponding postmortem report.
these descriptions, engineers’ discussion thread, and completed
work bullets, we classify the mitigation methods into the following
distinct types: ad-hoc fix, self-recover, rollback, configuration fix,
infrastructure fix, external fix, code fix, and others.
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7.1 Code Fix (7.6%)
This category is to address incidents by updating and fixing buggy
code or by incorporating new code [32], such as adding exception
handling mechanisms to improve resilience or implementing new
features for specific purpose. For example, certain Unicode char-
acters cannot be rendered in a font and thus do not appear in the
user interface, resulting in what is called hidden text. However, the
hidden text can still be understood and processed by the LLM. This
could be potentially exploited as an attack surface to change the
response from the user’s intent. The following code update adds a
new feature to remove the Unicode characters (within the range
of U+E0000 to U+E007F) that can be used as hidden text from the
user’s request.

const getCommandText = () =>
featureFlags.

enableRemoveUnicodeFromRequest
? removeUnicodeFromRequest(text) :

text;
...

const removeUnicodeFromRequest = (msg:
string) => {
const unescapedMsg = unescapeUnicode(

msg);
const regex = /[\u{E0000}-\u{E007F}]/

gu;
return unescapedMsg.replace(regex, "")

;
};

Finding 5. Given the tight deadlines for mitigating GenAI in-
cidents, only a small proportion (7.6%) of incidents are resolved
through code fixes. This approach is time-consuming, requiring
more efforts to design and implement the solution and navigate
through an end-to-end CI/CD pipeline. Consequently, other mitiga-
tion strategies are preferred by engineers for their faster resolution
times in the initial stages of mitigation.

7.2 Rollback (15.2%)
For incidents triggered by changes, such as configuration adjust-
ments or code updates, rollback is a widely used and efficient miti-
gation strategy. Engineers revert these changes to a previous, stable
version. Our study identifies: (1) Deployment Rollback (8.9%): Up-
dates to code or third-party libraries can introduce bugs. These
incidents can be addressed by reverting to a previous commit or an
older stable build version of the third-party library. For example,
an inference API error which caused by the compatibility issue be-
tween fine-tuning code and inference code can be fixed by rolling
back to a previous inference engine for users in specific regions; (2)
Configuration Rollback (6.3%): This involves undoing bad configura-
tion changes to alleviate the issue.

7.3 Configuration Fix (13.0%)
To address the majority of configuration errors, engineers often
fix bugs in configuration files to reinstate the service. We identify

two primary approaches to configuration fixes: (1) Add or Disable
Features (7.6%): Incidents can be mitigated either by adding new
features that enhance service stability or by disabling features that
are causing failures, thus aiding in the swift resolution of the issue;
(2) Increase the Configuration Limit (5.4%): Besides the configuration
issues, a number of incidents from resource capacity as mentioned
in Section 6.1 can also be mitigated by configuration changes as a
short-term strategy, such as increasing timeout thresholds.

7.4 Infrastructure Fix (12.1%)
For incidents caused by infrastructure issues, an infrastructure fix
is a frequently utilized mitigation method. Common infrastructure
fixes include scaling operations, component restarts or rebuilds, and
traffic failovers. One of the following actions can be performed: (1)
Scaling (6.3%): Due to infrastructure limitations, a service may not
be able to handle a large volume of traffic, and simple configuration
of increasing the capacity does not work. Therefore, scaling out
more instances or nodes to increase capacity is needed. For example,
increasing the compute capacity allows the service to process more
requests, thus avoiding an excessive number of request failures; (2)
Restart or Rebuild (3.1%): This category involves mitigating incidents
by restarting or rebuilding faulty components; (3) Traffic Failover
(2.7%): This involves failing over traffic to another healthy service
component, including nodes, clusters, or another cloud region.

Finding 6. In practice, increasing the limit of resource configura-
tion (5.4%) is a straightforward mitigation strategy. However, when
these configuration changes are insufficient due to the allocated
resources or infrastructure reaching their capacity, re-scaling (6.3%)
becomes necessary to resolve the GenAI incidents, even though it
may take a long time to deploy the additional infrastructure.

7.5 Ad-hoc Fix (22.4%)
LLM incidents can be complext, and engineers may not always be
familiar with the root cause of GenAI incidents. To address the
impact quickly, standardized procedures can be costly, so a series
of improvised, situation-specific steps are applied to mitigate the
symptom first. For instance, in response to a malicious user bypass-
ing the batch size limitation, engineers mitigated it by identifying
and blocking the malicious user, enabling the validation logic to
check the ImageModelA-batch-size parameter in the request head-
ers, and enforcing a maximum limit for the batch size. Also, in
other cases where a single user’s request consumed too many back-
ground resources and resulted in service overload, the issue was
mitigated by temporarily limiting the user’s request rate, adjusting
the throttling from 10 seconds throttling to one second for the cus-
tomer with a high workload. Note that over half of the incidents
from other cloud services are mitigated by ad-hoc fix (Figure 9),
while GenAI cloud services often require more development and
deployment efforts (other mitigation approaches to be discussed
in the following) to fully resolve the incidents. Consequently, the
TTM of GenAI incidents are longer.

7.6 External Fix (10.0%)
GenAI cloud services support external company partners and cus-
tomers, so some incidents are mitigated externally, including by
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Microsoft Partners and customers. For example, engineers will rec-
ommend that customers modify their prompts when their wrong
usage causes the model to return unexpected content or switch to
a stable model.

7.7 Self-recover (19.7%)
These transient incidents are automatically mitigated as the service
recovers on its own due to its resilience mechanisms, for example,
back-off retry, or when the monitoring system no longer detects
abnormal indicators, e.g., heartbeat detection rate returns to normal.
Note that self-recovered incidents are not false alarms in our dataset.

8 Discussion
8.1 Lessons Learnedd
Since the mitigation strategy categories for both GenAI and non-
GenAI share high similarities, we further perform a comparative
study to identify their distinctions. We find that GenAI incidents
generally require more time to mitigate compared to other types.
Specifically, on average, GenAI incidents take 1.12 time units to
resolve, compared to 0.65 time units for non-GenAI incidents.

To reveal the underlying reason: (1) We calculate the TTM for
each type of mitigation category, and find that the longer TTM for
GenAI incident holds across all mitigation categories, as shown in
Figure 8, reflecting the complexity of solving various GenAI inci-
dents. Additionally, across all factors we consider (severity levels,
detection types, troubleshooting guides) in the general analysis in
Section 4.3, the Time to Mitigation (TTM) for LLM incidents is con-
sistently longer than for incidents in other services. (2) We compare
the distribution of mitigation approaches, as depicted in Figure 9.
The ad-hoc fix (54.7%) is the majority of the mitigation for other
cloud services, which have shorter TTM compared to any GenAI in-
cident mitigation in Figure 8. The mitigation distribution of GenAI
incidents is more balanced, with ad-hoc fixes comprising only 22
4%. This indicates that, for GenAI cloud services in their early de-
velopment stage, more diverse, sophisticated, and time-consuming
methods are required as opposed to applying the ad-hoc fixes. (3)
The current monitoring tools for GenAI cloud services are being
continuously improved to better align with their unique require-
ments. Enhancements in accuracy and adequacy are expected to
help reduce TTM and improve overall efficiency. Unlike conven-
tional cloud services monitored by automated watchdogs, a high
percentage of GenAI incidents are detected by humans. According
to Table 1, only 13.7% of the incidents were detected by humans
for non-GenAI cloud services in our dataset, compared to 38.3% for

22.4%
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Configuration Fix
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Figure 9: The distribution of mitigation approaches.

GenAI incidents. Furthermore, monitor-detected GenAI incidents
have an 11.0% false positive alarm rate, significantly higher than
the 3.8% observed in other services. This suggests that the current
monitor is not mature compared to conventional incidents, and
requires additional effort to improve.

Longer TTM is also attributed to the difficulty in performing
root cause analysis for GenAI incidents. As discussed in Section 7,
a single symptom can stem from multiple root causes, thus compli-
cating the debugging of GenAI services. For example, diagnosing
unexpected model outputs can be complex; potential causes include
faulty hardware, misconfigurations, code defects, or misuse.

Table 1: Detection type distribution and false alarms rate for
GenAI and non-GenAI incidents.

Detection Type False Alarm Rate

Human Monitor Human Monitor
GenAI 38.3% 61.7% 6.6% 11.0%
Other 13.7% 86.3% 4.8% 3.8%

8.2 Implications
Our findings offer actionable insights for a wide range of stakehold-
ers, including researchers, model providers, service maintainers,
developers, and etc.
Researchers. Our study highlights several avenues for future re-
search, particularly in automated methods to detect invalid in-
ference results. Currently, invalid outputs (14.5%), such as hallu-
cinations or irrelevant responses, are challenging to detect. The
current state-of-the-art detection methods generally include 1) self-
judgment by the LLM, 2) fine-tuning another model with human-
labeled data, or 3) calculating consistency scores after multiple
attempts. However, neither of them is cost-efficient nor fully effec-
tive. More robust research is needed to address these limitations
and develop scalable validation algorithms that can operate across
various GenAI applications.
Model Providers. Besides the high ratio of invalid inference re-
sults (14.5%) and challenges in detecting hallucinations or invalid
content, another notable finding is that 38% of GenAI incidents
are reported by humans, reflecting that monitoring tools are un-
derdeveloped. Moreover, many GenAI cloud services (45.9%) are
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still under development or in the preview stage, coupled with the
scarcity of incident monitor types. Providers should enhance service
observability to detect and diagnose issues more effectively, and
provide better support and documentation to help users navigate
the complexities of GenAI service integration and management.
Service Maintainers. Our study reveals that the Time-to-Mitigate
(TTM) for GenAI incidents is 1.83 times longer than for non-GenAI
incidents, highlighting the need for automation in incident miti-
gation. The complexity of GenAI systems, which involve vast and
interconnected layers of infrastructure, dependencies, and configu-
rations, is a significant factor. For example, GenAI cloud systems
require 2.5x more infrastructure fixes, 3.0x more code changes, and
3.0x as many configuration updates compared to non-GenAI ser-
vices. Despite these, more straightforward ad-hoc fixes are applied
in only 22.4% of GenAI incidents, compared to 54.7% in non-GenAI
services, indicating a reliance on more complex, time-consuming
fixes for GenAI systems. Furthermore, diagnosing root causes of
GenAI incidents is often complex. A single symptom, such as poor
performance (49.8%) or deployment failure (35.7%), can have mul-
tiple root causes, including infrastructure problems (27.2%), con-
figuration problems (24.5%), or code bugs (22.5%). Services should
provide observability from different dimensions to obtain granular
insight into these symptoms and their underlying causes. Main-
tainers should consider 1) implementing more automation tools
or agents for distinct mitigation approaches, 2) adopting more
infrastructure-as-code practices to manage complex GenAI cloud
infra more effectively, and 3) integrating more automated rollback
mechanisms to address compatibility issues swiftly.
Application Developers and Users. For developers, input val-
idation and dynamic rate limiting are critical areas needing im-
provement. Incidents reveal that special characters, fragmented
prompts, and excessive token usage, even within token limits, can
disrupt model processing. Developers should implement strict in-
put validation processes to prevent these issues and adopt dynamic
rate-limiting strategies that adapt to real-time conditions.

9 Related Work
Empirical studies on cloud incidents. A significant amount
of prior work has been devoted to studying the characteristics
of incidents occurring in production systems. Ganatra et al. [19]
examined incident detection at Microsoft to identify monitoring
gaps in cloud platforms. Chen et al. [7] studied incident triage in
Microsoft’s online service systems to understand industry practices.
Zhao et al. [63] explored change-induced incident lifecycles in large-
scale online services, offering management insights. Wang et al.
[44] analyzed the time-to-mitigation (TTM) of incidents across 20
Microsoft online services. Building on this, our study delves into
incident characteristics, comparing incidents related to GenAI with
those of other services. In related work, Liu et al. [32] investigated
software bugs causing cloud incidents in Microsoft Azure and their
resolutions. Ghosh et al. [20] analyzed incidents in Microsoft Teams,
classifying root causes and mitigation steps. Martino et al. [17]
characterized failures in a business data processing platform using
event log data. Our study closely aligns with this body of research.
LLMs empirical study. In recent years, with the rise of large lan-
guage models (LLMs), numerous related studies have emerged. Cui

et al. [16] organize existing studies related to LLMs and propose
a comprehensive taxonomy, which systematically analyzes poten-
tial risks in LLM systems and discusses corresponding mitigation
strategies. Liu et al. [34] investigate the use of jailbreak prompts to
bypass restrictions imposed on ChatGPT. They conduct an empiri-
cal study to evaluate the effectiveness and robustness of prompts
collected from the real world. Zhuo et al. [65] present an empirical
study on the adversarial robustness of a prompt-based semantic
parser based on Codex. Yang et al. [50] conduct a study on GPT-3 in
knowledge-based visual question answering (VQA), treating GPT-3
as a knowledge base (KB) and adapting GPT-3 to solve the VQA
task in a few-shot manner. Our study focuses on the incidents in
GenAI cloud services.

10 Conclusion
In this paper, we present a comprehensive study of incidents from
GenAI cloud services within Microsoft. We explore the symptoms,
root causes, and mitigation strategies of GenAI incidents. Our find-
ings reveal unique characteristics in GenAI cloud services. For
example, we identify notable differences between incidents from
LLM cloud services and other cloud services, such as significant dis-
parities in the time to mitigation of incidents. Additionally, we find
that the primary cause of incidents in LLM cloud services is related
to infrastructure. These findings provide guidance for future aca-
demic and industrial research in the field of LLM cloud services. We
hope to inspire the development of advanced, specialized tooling
and raise discussions on GenAI incidents, so that our community
can monitor the GenAI cloud system with early warnings, triage
incidents to the correct teams with fewer hops, pinpoint root causes
accurately, and mitigate the incidents with optimal plans.
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