
Push-Button Reliability Testing for Cloud-Backed
Applications with Rainmaker

Yinfang Chen, Xudong Sun, Suman Nath†, Ze Yang, Tianyin Xu

University of Illinois at Urbana-Champaign †Microsoft Research

Abstract

Modern applications have been emerging towards a cloud-
based programming model where applications depend on
cloud services for various functionalities. Such “cloud native”
practice greatly simplifies application deployment and real-
izes cloud benefits (e.g., availability). Meanwhile, it imposes
emerging reliability challenges for addressing fault models of
the opaque cloud and less predictable Internet connections.

In this paper, we discuss these reliability challenges. We
develop a taxonomy of bugs that render cloud-backed ap-
plications vulnerable to common transient faults. We show
that (mis)handling transient error(s) of even one REST call
interaction can adversely affect application correctness.

We take a first step to address the challenges by building
a “push-button” reliability testing tool named Rainmaker, as
a basic SDK utility for any cloud-backed application. Rain-
maker helps developers anticipate the myriad of errors under
the cloud-based fault model, without a need to write new poli-
cies, oracles, or test cases. Rainmaker directly works with
existing test suites and is a plug-and-play tool for existing
test environments. Rainmaker injects faults in the interactions
between the application and cloud services. It does so at the
REST layer, and thus is transparent to applications under test.
More importantly, it encodes automatic fault injection policies
to cover the various taxonomized bug patterns, and automatic
oracles that embrace existing in-house software tests. To date,
Rainmaker has detected 73 bugs (55 confirmed and 51 fixed)
in 11 popular cloud-backed applications.

1 Introduction
Modern applications have been emerging towards a cloud-

based programming model where applications depend on
cloud services for various functionalities. Such “cloud na-
tive” practice greatly simplifies application development and
deployment, and realizes cloud benefits (e.g., scalability, avail-
ability, and cost efficiency). Today, all major cloud providers
offer various cloud services to support cloud-based program-
ming, e.g., storage, database, and machine learning [5,10,14].
These cloud services have been increasingly adopted, e.g., the
.NET SDK of Azure Storage services has tens of thousands
of daily downloads [70]. We term the applications that rely
on cloud services cloud-backed applications.

Application

Database

Storage

Application

Database
Service

Storage
Service

REST ca
ll REST call

syscall

lib call
transient

fault
Slow

connection

Server
busy

Internal
server
error

syscall

(a) Traditional applications (b) Cloud-backed applications

Figure 1: Fault domains of (a) traditional applications and (b) cloud-
backed applications (the subjects of this paper).

Cloud-backed applications interact with one or more cloud
services, usually through REST APIs over HTTP/HTTPS. To
ease programming, cloud providers typically offer SDKs on
top of the REST APIs to support applications written in dif-
ferent programming languages. For example, AWS provides
SDKs in 12 languages, such as .NET, Java, Python, and C++.

Despite the attractive benefits, cloud-based programming
imposes emerging reliability challenges introduced by the
fault models of opaque cloud backends and less predictable
connections between the application and cloud services. Fig-
ure 1 compares the fault model of cloud-backed applications
with traditional applications backed by local services. Un-
like traditional applications that have simple, shared fault
domains as the system services with well-specified APIs (e.g.,
POSIX), the fault domains of cloud-backed applications are
more heterogenous, unpredictable, and opaque. It is reported
that cloud-backed applications commonly experience tran-
sient errors and network delays [22, 42, 81, 88].

In this paper, we unravel the reliability challenges faced
by cloud-backed applications. We show that there is a lack
of standards and consistencies of existing cloud services on
what errors are communicated by cloud service APIs, and
how SDKs handle the errors. As a consequence, it is chal-
lenging for application developers to anticipate and correctly
handle myriad faults that could occur during the application’s
interaction with the cloud services, resulting in critical bugs.
For example, many SDKs employ automatic retries to handle
transient errors; however, retries on non-idempotent APIs, if
not done correctly, could result in elusive behavior, such as
silent semantic violations and unhandled exceptions (see §3).

Contributions. We take a first step to address the emerging
reliability challenges by building a “push-button” reliability
testing tool named Rainmaker, as a basic SDK utility for
any cloud-backed application. Rainmaker helps developers

easily and systematically test their applications’ correctness,
in the face of various errors under the cloud-based fault model.
Rainmaker does not need developers to write policies, oracles,
or test cases. It directly works with existing test suites and is a
plug-and-play tool for existing test environments. Rainmaker
is generic to any type of cloud-backed applications.

Designing Rainmaker is challenging. Despite the rich liter-
ature on fault injection techniques and error-handling analysis
(see §7), we find that no technique can support a push-button
solution for cloud-backed applications. Many existing tools
provide only the basic randomized fault injection policies
and basic crash oracles [6, 37, 47] that can miss critical bugs,
and application-specific techniques are not widely applicable
(e.g., checking data consistency for databases [16,52] and file
systems [20,69]). Techniques that address program faults (ex-
ceptions and errno) and component faults (e.g., node crashes)
are too coarse-grained to capture the nuances of complex
interactions between the application and cloud services.

Rainmaker puts its focus on transient errors faced by cloud-
backed applications. Basically, Rainmaker injects transient
faults (e.g., temporary service unavailability and request time-
outs) by intercepting outbound REST API calls from the ap-
plication to the cloud service at the HTTP layer. HTTP-layer
interception makes it easy to capture fine-grained interactions
(including those triggered by SDK-level retries) and is trans-
parent to applications under test. Hence, Rainmaker requires
no modification of application source code and can be directly
applied to an existing test environment.

A key component of Rainmaker is its automatic fault injec-
tion policies that define 1) what faults to inject and 2) where
(e.g., at which REST calls) to inject faults. The former de-
termines the effectiveness and validity of the injected faults,
while the latter also affects test efficiency. Rainmaker’s fault
injection policies are guided by a bug taxonomy we devel-
oped to describe how error handling could go wrong under the
cloud-based fault model. The taxonomy is simple: it considers
transient error(s) that can occur during one REST API call ini-
tiated by the application (and the corresponding retries by the
SDK); yet, it captures common bug patterns and shows that
error (mis)handling of even one REST call can have major
impacts on application correctness. Rainmaker uses a small
set of injections to cover all taxonomized bug patterns.

Rainmaker also enables efficient testing to achieve high
testing coverage with a small number of test runs. Rainmaker
employs automatic dynamic instrumentation to record the
application’s calling context of each REST API call and to
inject call-site information in the HTTP header of outgoing
requests; Rainmaker’s HTTP-layer fault injection uses the in-
formation to selectively inject faults based on a desired code
coverage metric. The calling context also enables Rainmaker
to build diagnosis support to help developers debug applica-
tion behavior under fault injection (when a bug is detected).

Finally, Rainmaker includes automatic oracles to flag a
fault-injection test outcome as a likely bug, with low false pos-

itives. The oracles utilize exceptions and assertions of existing
software tests. For exceptions, Rainmaker does not naïvely
report any exception that fails a test as a bug, but checks
whether the exception is consistent with the injected fault—
an inconsistent exception indicates that the fault was handled
intentionally, but inappropriately (at least insufficiently).

Key results. We have implemented Rainmaker for .NET
applications. Rainmaker supports a number of cloud ser-
vices: Azure Storage (including Blob Storage [7], Queue Stor-
age [11], and Table Storage [12]), Azure CosmosDB [9], AWS
Simple Storage (S3) [1], and AWS Simple Queue (SQS) [4].
Supporting a new cloud service only takes the configuration of
the SDK API namespace and the request-ID tag. Rainmaker
is fully transparent to the application under test. We evaluate
Rainmaker with 11 popular .NET applications that use the
supported cloud services. Rainmaker found 73 new bugs in
total, among which 55 have been confirmed, and 51 have been
fixed (after we reported them). Many of the bugs have severe
consequences, such as unexpected application termination,
data loss/inaccessibility, and resource leaks. Rainmaker’s test
oracles are mostly accurate, with a very low false-positive
rate (1.96%), making its test results trustworthy.

Summary. The paper makes the following contributions:

• We unravel emerging reliability challenges of cloud-based
programming, faced by cloud-backed applications, under
the existing design of cloud service APIs and SDKs;

• We present a taxonomy to systematically understand error-
handling bugs that render cloud-backed applications vulner-
able to transient errors under the cloud-based fault model;

• We develop Rainmaker, the first push-button reliability
testing technique for cloud-backed applications, which can
effectively and efficiently detect bugs of myriad patterns;

• We have made Rainmaker publicly available at https://
github.com/xlab-uiuc/rainmaker, with instructions to
reproduce all discovered bugs.

2 Background and Motivation
We discuss the emerging reliability challenges faced by

cloud-backed applications as the background and motivation
of our work. Ideally, cloud-based programming should not
be different from traditional application programming using
native libraries. Unfortunately, as we will show in this section,
this is rarely the case in practice—handling errors under the
cloud-based fault model is challenging and error-prone.

2.1 Errors in Cloud-backed Applications
There are three key components related to how cloud ser-

vice related errors are exposed to the applications.

Error responses from cloud services. A request from the
application can fail due to a client-side error (e.g., local net-
work timeout) or a service-side error (e.g., temporary service

https://github.com/xlab-uiuc/rainmaker
https://github.com/xlab-uiuc/rainmaker

SDK Retry (HTTP Status Codes) (API) Notes

Azure Storage (Blob/Queue/Table) 408, 429, 500, 502, 503, 504 Any Only 429 and 503 are retried before v12.3.0
Azure CosmosDB (HTTP mode) 403, 404, 408, 503 Read Only enabled for multi-region (no retry for single-region)
AWS S3 / AWS SQS 500, 502, 503, 504 Any Inconsistencies in different lang. SDKs (e.g., Java versus .NET)

Table 1: The retry policies of different cloud services. Besides the HTTP status codes, SDKs could also retry on error messages, e.g., the Azure
Storage SDK also retries on messages including InternalError, OperationTimedOut, and ServerBusy.

unavailability). In the latter case, the service returns an error
response indicating the error type. Most cloud services are
RESTful, and their APIs reuse HTTP response status codes
defined by the HTTP/1.1 standard. HTTP status codes 4XX
and 5XX indicate “client errors” and “server errors” respec-
tively. In addition, a cloud service can include service-specific
error codes in response payload to indicate fine-grained er-
ror types. For example, Azure Blob Storage can return 44
different error codes (e.g., BlobImmutableDueToPolicy and
BlobAlreadyExists) with the same HTTP status code 409
(Conflict) [8]. The practice is also used by other cloud ser-
vices, e.g., CosmosDB [15], S3 [3], and SQS [2]. Applications
use these codes to understand the nature of the errors and take
error-handling actions accordingly.
Retry on transient errors. When a request fails due to a
transient client- or service-side error (e.g., network timeout
and server overload), an application may retry the request,
hoping that it would eventually succeed. Cloud-backed appli-
cations mostly use the SDKs provided by the cloud service
providers to interact with the cloud services. Besides offering
easy-to-use, expressive APIs, SDKs also include error han-
dling logic with the goal of providing a native programming
experience. For example, when a REST API call to a cloud
service fails due to a transient error, the SDK tries to mask
the error from the application by retrying the request [67].
Propagating errors up to the application. If the retry efforts
fail or if the error is of a permanent type, the SDK propagates
the error up to the application in a way that is consistent with
a native programming experience. For example, .NET and
Java SDKs propagate errors to applications as exceptions.

2.2 Emerging Reliability Challenges
2.2.1 A lack of standards and consistencies

Our analysis of multiple cloud service APIs and SDKs from
Azure and AWS reveals a lack of standards and behavior
consistencies in all three components above, across cloud
services and SDKs from the same/different cloud providers.
Unanticipated errors. We observe many undocumented and
inconsistent error codes returned by cloud services. For exam-
ple, as of September 2022, common HTTP error codes such
as 408 (RequestTimeout) and 429 (TooManyRequests) that can
be returned by Azure Table Storage [78] are absent from its
official documentation [66]. We also observe that the same
error can be represented by different error codes across ser-
vices. For example, Azure Queue Storage represents the error

QueueNotFound by the code 404, while AWS SQS uses the
code 400 for the same error. We even reported and fixed
multiple typos in error messages in Azure Storage SDKs.

Second, whether an error will be masked by the SDK (with
retries) and whether an error will be propagated to an applica-
tion vary widely across different services, different versions of
the same service, and different language support of the same
version. Table 1 shows that SDKs of different cloud services
implement different retry policies. Azure Storage .NET SDKs
before v12.3.0 only retry on error codes 429 and 503; the later
versions add retry for 408, 500, 502, and 504 [28]. The .NET
SDK for AWS retries on LimitExceededException, but the
Java SDK does not. Finally, whether an error is propagated
to the application varies even across SDKs from the same
provider. The DeleteMessage API of Azure Queue propagates
an exception to the application when a 404 is returned by
the service. On the other hand, the DeleteEntityAsync API of
Azure Table silently ignores 404 errors and returns success.

The inconsistencies make it hard for developers to antici-
pate whether a cloud service will return a specific error and
whether the SDK will propagate it to the application.

Note that, unlike libraries and system services for tradi-
tional applications, a cloud service neither is a part of the
application nor has standard APIs such as POSIX.

Retry and non-idempotent APIs. While retry is a common
practice to mask transient errors, the retry may introduce
subtle errors. In particular, a retry on a non-idempotent cloud
service API can cause elusive effects, such as remote data
corruption, which can remain latent or lead to additional errors
(more details in §3). However, we observe that each service
implements different retry logic, with no standard practice or
discipline. As a result, the semantic of SDK APIs, under error
conditions, is often opaque and inconsistent.

2.2.2 Rarity and large space of faults
Developers often miss error-handling bugs with small-

scale, short-duration functional tests because cloud-based
faults, which could expose such bugs, are rare. Fault-injection
tools allow developers to simulate error scenarios during
testing. However, although it is not hard to implement fault-
injection mechanisms [35, 44], the key challenges lie in spec-
ifying policies about what faults to inject, where and when
to inject them, and oracles about what post-fault conditions
indicate a likely bug for developers to inspect. The space of
possible fault policies and oracles is large, if not infinite.

2.3 Our Goal
Our goal is to address the emerging reliability challenges

faced by cloud-backed applications by (1) systematically un-
derstanding the bug patterns, and (2) building practical tooling
to systematically test whether a cloud-backed application can
correctly handle the myriad errors that may happen during
interactions with the cloud services it depends on. We em-
phasize a “push-button” technique that can be directly used
by application developers in an existing testing environment,
without the need of writing additional code or configurations.

3 Bug Taxonomy
To systematically understand the patterns of error handling

bugs of cloud-backed applications and to guide the design of
the Rainmaker tool, we develop a bug taxonomy to describe
how error handling could go wrong under the cloud-based
fault model. Figure 2 depicts the bug taxonomy as a tree.
An important trait is that the taxonomy considers transient
error(s) that occurred during one REST API call interaction
initiated by the application. It does not reason about multiple
independent REST API calls.

3.1 No Error Handling
In this pattern, the application simply does not handle cer-

tain transient errors. This can happen due to the inconsisten-
cies mentioned in §2.2.1. An application may not anticipate
a cloud service to return a specific error or may mistakenly
expect the SDK to mask a known transient error. For exam-
ple, an application using Azure Storage’s .NET SDKs before
v12.3.0, which do not retry on certain transient error codes,
may mistakenly assume that all transient errors are masked
by the SDK and hence not handle them. As a result, some
transient error from the cloud service can lead to application
crashes or other undesirable behavior.

3.2 Throwing Unrelated Exceptions
In this pattern, (mis)handling of an error results in a new

unhandled error that is usually unrelated to the root-cause
fault. A common example of this pattern involves request
retries. When a request to a cloud service fails with a timeout,
the SDK or the application cannot determine whether the
timeout happened on the request path or on the response
path. SDKs commonly treat timeout as a transient failure
and retry. However, if the timeout happened on the response
path (in which case, the original request was executed by
the service successfully), the retry can fail with a new error
(different from the original error) since the original request
has invalidated the precondition of the retry. This new error,
if not handled properly, can lead to undesirable effects.

Figure 3 shows an example of such bugs [32] detected by
Rainmaker in Microsoft BotBuilder [17]. BotBuilder stores
logs in the Azure Blob Storage service. Each log operation

Transient Error
Handling Bugs

No Error
Handling (§3.1) Buggy Error Handling

Throwing Unrelated
Exceptions (§3.2) State Divergence (§3.4)

Silent Semantic
Violations (§3.3)

Figure 2: Taxonomy of error handling bugs in cloud-backed ap-
plications. The taxonomy addresses the handling logic of transient
error(s) that occurred during the interaction of one REST API call.

try {
while (transcript.Count > 0) {

var activity = transcript.Dequeue();
await logger.LogActivityAsync(activity);

}
} catch (Exception ex) {

...
}

/* libraries/Microsoft.Bot.Builder/TranscriptLoggerMiddleware.cs */

The BlobAlreadyExists (409)
exception breaks the while loop;
all the subsequent logs get lost.

Azure Blob
Storage

timeout

409

Blob
created

Blob
Already
Exists

Figure 3: A bug of throwing unrelated exceptions in Microsoft
BotBuilder detected by Rainmaker (confirmed and fixed). The Azure
Storage SDK automatically retries on timeouts, which returns a 409
error because its precondition is invalidated by the first request.

calls an SDK API to create a new blob. If the API call success-
fully creates the blob, but the response times out, the Azure
Storage SDK automatically retries the request (§2). However,
since the blob has already been created by the first request,
the retry operation fails with a 409 (BlobAlreadyExists) error.
The SDK propagates this permanent error to the application.
BotBuilder does not anticipate or handle the error. This breaks
the execution of a loop that is supposed to upload a list of logs
to the Blob Storage service, resulting in a loss of subsequent
log data. Note that the exception seen by the application is
unrelated to the root cause (a transient timeout).

In the next two categories, the buggy error handling does
not immediately throw an exception. Rather, it causes unex-
pected (local or remote) state changes that may cause visible
symptoms (e.g., exceptions) during subsequent execution.

3.3 Silent Semantic Violations

In this pattern, mishandling of a transient error causes se-
mantic violations of the REST API specification, without
observable symptoms. The REST call returns successfully,
and hence the application executes in a happy path. However,
the silent semantic violation may eventually result in data
loss/corruption, or other incorrect application behavior. One
common example of this pattern is manifested by a similar
root cause as the one in §3.2: response timeout. Differently,

/* src/.../Storage/AzureQueueDataManager.cs */

Azure Queue
Storage

timeout

/// Get a new message from the queue
public async Task<QueueMessage> GetQueueMessage() {

...
var messages = await queueClient.

ReceiveMessagesAsync(maxMessages: 1,
messageVisibilityTimeout);

return messages.Value.FirstOrDefault();
...

}

timeout

200
The queue is de-queued
multiple times and null
is returned.

Figure 4: A silent semantic violation bug in Microsoft Orleans
detected by Rainmaker. Azure Storage SDK automatically retries
multiple times on timeouts, and mistakenly empties the queue.

in this pattern, the retry operation succeeds, and the SDK
successfully hides the transient error from the application.

Figure 4 shows a silent semantic violation [71] detected
by Rainmaker in Microsoft Orleans [13]. Orleans uses Azure
Queue Storage service to manage messages. It implements a
method GetQueueMessage() to dequeue one message from the
queue. As shown in Figure 4, the method calls the SDK API
ReceiveMessagesAsync to dequeue a message from the remote
service. The corresponding HTTP request is non-idempotent
and should not be naïvely retried [76], because each retry
changes the contents of the queue. However, the SDK API au-
tomatically retries the request on a transient fault. If a request
successfully dequeues a message but its response times out,
the SDK retries the request multiple times, each of which, if
successful, can dequeue a message. If the last retry/response
succeeds, the API successfully returns the message. The ap-
plication does not handle this corner case, even though the
API documentation mentions it. Such behavior violates the
semantic of the GetQueueMessage() API which is documented
to only “get a message from the queue” [62]. In fact, repeated
retries can dequeue all the messages from the queue, in which
case the SDK API returns null; Orleans does not expect such
behavior and would dereference the null pointer and crash.
Note that ReceiveMessagesAsync is not the only method that
has such behavior. If we replace it with SendMessageAsync, the
above example can enqueue more messages than expected,
which may lead to silent resource leaks on the cloud service.
Such silent semantic violations are hard for application devel-
opers to fix or even detect, as the retries are done by the SDK
and are agnostic to the application.

3.4 State Divergence
In this pattern, a mishandled transient error leads to diver-

gence of the local state (in the application) and the remote
state (in the cloud service). There is no API semantic violation
as in §3.3, but the state divergence could lead to undesired
application behavior, e.g., exceptions and resource leaks.

State divergence can happen when an application optimisti-
cally updates a local state that is correlated with the success
of a cloud API call made after the update. The bug manifests
if a transient fault fails the request (so no change on the cloud
side), but the application does not restore the optimistic up-

try{ ...
var container = blobClient
.GetContainerReference(containerName);

if (!_checkedContainers.Contains(containerName))
{
_checkedContainers.Add(containerName);
container.CreateIfNotExistsAsync().Wait();

}
...

} catch (Exception ex) {
Trace.traceError(...);

}

/* ...\libraries\...\AzureBlobTranscriptStore.cs*/

...

Azure Blob
Storage

Update local state (succeed)
Update remote state (failed)

The local container becomes a dangling reference; de-referencing it leads to errors.

503

503

Figure 5: A local-state divergence bug in Microsoft BotBuilder
detected by Rainmaker (confirmed and fixed). Azure Storage SDK
automatically retries multiple times (for 503).

date. The updated state makes the application behave as if the
REST API call succeeded, while it actually failed.

Figure 5 shows a state-divergence bug [30] from Mi-
crosoft BotBuilder [17] detected by Rainmaker. BotBuilder
uses Azure Blob Storage to store blob data which is or-
ganized into containers. To create a container, BotBuilder
calls REST API CreateBlobContainer. When transient errors
(e.g., 503 ServerBusy errors) occur on the request path of a
CreateBlobContainer call, BotBuilder swallows the excep-
tion in the catch block. However, BotBuilder adds the con-
tainer into its local state of created containers before calling
CreateBlobContainer. As a result, the local state is corrupted
with a dangling container pointer, which leads to crashes when
BotBuilder dereferences the pointer (e.g., with a list opera-
tion). The bug has the same essence as file system bugs that
violate update dependencies [39]. On the other hand, transient
errors are likely more frequent than file system crashes.

State divergence can also happen when a request changes
the remote state, but the application is unaware of the change.
Such bugs can manifest when a transient fault breaks the
return path of a REST call that has changed the remote state.
If not handled correctly, the application would assume the call
never succeeded, leading to inconsistencies of states.

4 Rainmaker

4.1 Overview
Rainmaker is a “push-button” reliability testing tool for

applications that use RESTful cloud services, such as Azure
Storage, Azure CosmosDB, and AWS S3. It checks whether
the application under test can correctly tolerate or handle com-
mon transient errors under the cloud-based fault model (e.g.,
temporary service unavailability and request timeouts), and de-
tects bugs like the ones described in §3. Its “push-button” na-
ture comes from the automatic fault-injection policies (§4.2)
and oracles (§4.3), which are generic and applicable to any
application that uses the supported cloud services.

A developer can directly apply Rainmaker as a “plugin-
and-play” tool to their existing test suites in their existing
testing environments, without writing additional code or con-
figurations. The plugin-and-play nature is achieved by its fault

injection mechanism—Rainmaker injects errors by intercept-
ing outbound REST API calls made by the application to
the cloud service at the HTTP layer. It includes a standalone
HTTP proxy component to do the interception. For example,
to inject a 5XX error on the request path of a REST call, the
proxy blocks the request from reaching the service and re-
sponds with an HTTP response containing the 5XX error code.
To inject a timeout on the response path, the proxy lets the
request go to the service; however, on receiving the response,
it introduces a delay to force a timeout at the application.

Compared with injecting faults directly into application
code (e.g., in the forms of exceptions), intercepting at the
HTTP layer brings a number of technical benefits: 1) it allows
intercepting fine-grained REST calls made by the application,
including those triggered by SDK retries. As we discussed in
§3, injecting errors into retry requests and responses is cru-
cial for exposing certain categories of bugs; 2) error handling
in cloud-backed applications depends on not only exception
types but also HTTP status codes; 3) it makes the fault in-
jection mechanism transparent to the application under test
and work irrespective of the application language and archi-
tecture; 4) HTTP requests/responses are highly interpretable,
and errors can be uniformly injected by manipulating HTTP
responses, with no need to understand external dependencies
(e.g., complex exception objects with multiple fields).

Usage. Rainmaker takes as input an existing testing suite that
uses RESTful cloud services such as Azure Storage services
or their emulators [68], and a desired coverage metric (§4.2.2).
Rainmaker first installs a local HTTP proxy that can intercept
and manipulate HTTP traffic to and from cloud services (or
their emulators). It then selects and executes a minimal set
of tests required to achieve the target coverage. As tests are
executed, Rainmaker injects faults into their REST API calls
according to automatic fault-injection policies. After each test
is executed, Rainmaker’s oracles analyze the test outcomes
and raise alerts as potential bugs are detected.

We envision Rainmaker to be a standard, widely-used test-
ing utility as a part of cloud service SDKs.

4.2 Fault Injection Policy
A fault injection policy specifies what faults to inject and

where (at which REST API calls) to inject them. Rainmaker’s
fault injection policies are designed with two main objectives.

First, the policies should be effective. This requires them to
1) inject only valid faults and 2) cover the myriad bug patterns
of the taxonomy (§3). One common policy is randomized fault
injection (e.g., selecting a random fault at a random REST
call). However, randomized injection can hardly be effective.
As shown in §3, to expose certain bug patterns needs multiple
specific faults injected along the interaction of a REST API
call—randomized injection is unlikely to hit the specifics.
In fact, randomized injection cannot even guarantee valid
faults. For example, returning a 503 (ServiceUnavailable)

timeout

Application Cloud Service

200 or 4XX

timeout

timeout

...

...
timeout

...

5XX

5XX

5XX

5XX

P : Timeout the first response P : Timeout all responses

P : Return 5XX to
all requests

P : Timeout the first response;
return 5XX to subsequent requests

Application Cloud Service

Application Cloud Service Application Cloud Service

1 2

3 4

Figure 6: Fault injection policies of Rainmaker that cover all the
bug patterns in our taxonomy (see Table 2). Arrows represent HTTP
requests and responses for a single REST call (and retries). 5XX
represents an error code for transient service-side failure. For a REST
call with no retry, the four policies are reduced to two.

error after a write request is successfully executed is invalid,
because this is inconsistent with the cloud service contract.1

Second, the policies should enable efficient testing—
achieving high testing coverage with a small number of test
runs. Exhaustively injecting all possible faults at every REST
call could be prohibitively expensive, because one test could
issue thousands of REST API calls (see §5.3), and many differ-
ent faults are possible for each call. This is further aggravated
by the fact that each fault injection may require a separate
test run because injecting the first fault might disrupt a test’s
subsequent execution.

We next discuss how Rainmaker achieves the two objec-
tives in §4.2.1 and §4.2.2, respectively. Note that Rainmaker
can be easily extended to support new policies.

4.2.1 What faults to inject (for a REST API call)?
Rainmaker injects transient faults that occur during the in-

teraction of one REST API call, following the taxonomy in §3.
However, the fault space is large even for a single REST call.
This is because each of the large number of possible faults
may occur on the request or the response path of the original
request or subsequent retires issued by the SDK. Interestingly,
we find that a small set of four policies (Figure 6) are suf-
ficient to cover the taxonomized bug patterns, as shown in
Table 2. For REST calls that do not retry, the four policies are

1In practice, a cloud service backend can have bugs to return such an in-
consistent response [23]. However, we do not consider buggy cloud services.

Bug Pattern Fault Injection Policies

No error handling P1, P2, P3, P4
Throwing unrelated exception P1
Silent semantic violation P1, P2
State divergence P1, P2, P3, P4

Table 2: The mapping from the bug patterns and the error injection
policies that can potentially expose each bug pattern.

reduced to two: 1) return a transient error code to the request,
and 2) timeout the response. The four policies are:

• P1 (Timeout the first response). This policy forces a retry
that can expose bugs related to invalidated preconditions.
Since the timeout is at the response path after the request
takes effect at the cloud service, the retry could trigger
bugs of throwing unrelated exceptions, silent semantic vi-
olation, and/or state divergence, depending on the REST
API semantics and the handling logic.

• P2 (Timeout all responses). This policy presents an entirely
timed-out REST call to the application, while the REST call
has taken effects (potentially multiple times) at the cloud
service. It could trigger bugs of silent semantic violation
and state divergence.

• P3 (Return transient error codes to all requests). Under this
policy, the REST call does not reach the cloud service as
all requests are returned with transient service-side errors.
The policy can potentially expose bugs of state divergence,
if the local state is optimistically changed before the REST
call, but not restored after the call fails.

• P4 (Timeout the first response and return transient error
codes to all subsequent requests). This policy presents a
failed REST call (with a transient error code in response) to
the application, which on the contrary has been successfully
executed exactly once at the cloud service. It could trigger
bugs of state divergence.

Rainmaker by default injects 503 (ServiceUnavailable), as
the transient fault(s) for request failures. For the responses,
Rainmaker injects a timeout fault. These two types of transient
faults are common and safe to inject and thus are valid faults
on the request and response path, respectively. In comparison,
error codes like 500 (InternalServerError) have undefined
semantics and service-side behavior. The error code can be
further customized for specific cloud services and their SDKs
based on their definitions of transient faults and retry policies.

Rainmaker identifies all the retried requests and their re-
sponses of each REST API call by checking the unique re-
quest ID in the HTTP header (e.g., x-ms-client-request-id
for Azure Storage services). The request ID is provided by the
SDK to identify the specific REST call request and is shared
by all the subsequent retried requests and responses.

One design choice we make is to avoid encoding specifica-
tions of REST/SDK APIs in policies (e.g., idempotency of a

Coverage Metric

C1 Cover all tests; for each test, select the first REST call.
C2 Cover all unique call sites of the application code; if a call

site is exercised by multiple tests, select the cheapest test.
C3 Cover all tests and all unique call sites in a pairwise manner.
C4 Cover all unique call sites of every test; if multiple REST calls

exercises the same call site, select the first call to inject.

Table 3: The coverage metrics supported by Rainmaker. We use C4
as the default metric. Note that injecting faults in every REST call
in every test is prohibitive (see §5.3).

REST API and retry behavior of an SDK API). Leveraging
API information can help optimize test efficiency. However,
it is known that specifications are expensive to maintain and
are often incomplete and outdated in practice. Rainmaker
minimizes its assumption on the REST/SDK APIs.

4.2.2 Which REST API calls to inject faults?
A test suite may generate an excessive number of REST

calls; injecting faults into all of them can be prohibitively
expensive, even with the above optimized policies (it could
take several machine-months for one application, §5.3). In
fact, many REST calls can be redundant (e.g., invoked by the
same application code location) for the purpose of covering
new error-handling code. Rainmaker therefore selectively in-
jects faults into a small number of REST calls, which achieves
certain coverage metrics and optimizes testing resources.
Coverage metrics. Rainmaker supports four different cover-
age metrics (Table 3). While C1 measures coverage in terms
of the REST calls, C2–C4 involves call sites of cloud service
APIs. We use the term call site to denote a location in the ap-
plication code that invokes an SDK API that eventually makes
one or more REST calls (typically, one SDK API invokes one
REST API [26, 27]). Call sites reside in the application code,
while REST calls are constructed by the SDK. Hence, C2–C4
are more intuitive to developers than C1.

However, computing C2–C4 is challenging for Rainmaker
and for any other tools that inject faults via a separate HTTP
proxy [37, 47]. This is because the proxy process does not
have visibility of call sites within the test/application process.
Making call sites available to the HTTP proxy. Rainmaker
addresses this challenge with two techniques using automated
instrumentation. First, Rainmaker enables a test to communi-
cate with the HTTP proxy through headers of outgoing HTTP
messages. Given test binaries, Rainmaker automatically in-
struments their outbound HTTP calls. An instrumented call
can put its call site information in the header of an outbound
HTTP request, so the HTTP proxy can retrieve the informa-
tion. This can be done automatically since outbound HTTP
calls are usually made with a small number of standard core
APIs. For example, one needs to instrument only four HTTP
client API families (e.g., HttpClient.SendAsync) provided by
.NET core libraries to intercept outgoing HTTP calls from all
Azure SDKs (see §4.5).

Second, an outbound HTTP call needs to automatically find
its call site to put in the HTTP header. If the application were
single-threaded, the instrumented HTTP call could identify
the call site by taking the caller of the bottom-most SDK
function in the call stack. But, modern applications are multi-
threaded, and an HTTP call usually happens asynchronously
in a child thread created as a result of executing the call site.
In this case, a call stack taken at an outbound HTTP call does
not capture the call site that resides in a different thread.

To solve this problem, Rainmaker utilizes inheritable
thread-local storage (ITLS) supported by modern languages
such as .NET [64] and Java [49]. Any data stored in the cur-
rent thread’s ITLS automatically propagates to all its child
threads. Rainmaker automatically instruments all call sites
(identified by SDK namespace) so that at runtime, they store
their location information in the current thread’s ITLS. When
a call site eventually invokes an instrumented, outgoing HTTP
call, in the same thread or in a child thread, the call retrieves
the call site information from its ITLS and puts it in the HTTP
header for the proxy process to examine.

Test planning. With the call site information available at the
HTTP proxy, Rainmaker can inject faults according to the
specified coverage metric in Table 3. Each coverage metric is
a tradeoff between completeness and cost.

To plan the fault injection runs, Rainmaker first performs
a reference run of the test suite with no fault injection. Dur-
ing the reference run, Rainmaker measures the time taken by
each test and observes, by using its HTTP proxy, the REST
calls made by different tests. It then selects the tests that issue
REST calls as candidate tests for fault injection. Rainmaker
then performs an offline analysis to generate test plans con-
taining the minimum number of fault-injection target REST
calls (and their tests) in order to achieve target coverages. It
also outputs an approximate running time of each plan using
the time of the tests in the reference run and, if any, the de-
lays to be injected to create timeout errors. The time helps a
developer choose the right coverage metric by understanding
the tradeoff between completeness and cost.

Given the time taken by each test and the set of REST calls
each test makes in the reference run, it is straightforward to
implement the policies C1, C2, and C4. For C3, Rainmaker
models it as a linear programming (LP) problem of generating
a set of pairs that cover all N tests and M unique call sites (with
each test covering a subset of call sites), while minimizing the
total test running time (each test has different running time).
It then uses an LP solver to generate a plan.

Note that test planning, including the reference run and LP
solving, is done offline as a one-time effort. The results can
potentially be reused across test runs in CI/CD environments.

4.3 Test Oracles
A test oracle checks whether the outcome of a fault injec-

tion test run indicates a bug. A trustworthy oracle catches

/// test code
public async Task
Should_be_able_to_send_if_container_was_not_found()
{ ...
await plugin.BeforeMessageSend(message); ...

} /* ServiceBus.AttachmentPlugin.Tests/When_sending_message_using_connection_string.cs */

/// application code
public override async Task<Message>
BeforeMessageSend(Message message)
{ ...
try {
await container.CreateIfNotExistsAsync();

}
catch (StorageException ex) {
// intentionally swallow and continue

}
...
await blob.UploadFromByteArrayAsync(...);
...

} /* ServiceBus.AttachmentPlugin/AzureStorageAttachment.cs */

503

Azure.Storage.StorageException:
Service unavailable (503)

Azure.Storage.StorageException:
Container does not exist (404)

Figure 7: An exception captured by Rainmaker to detect a state-
divergence bug in ServiceBus AttachmentPlugin. The exception that
fails the test (404) is inconsistent with the injected fault (503).

different types of bugs with no false alarms so that developers
can focus their investigation only on true bugs.

With the goal of being generic and widely applicable
to any cloud-backed application, Rainmaker does not use
any application-specific oracle. Instead, it devises a set of
application-agnostic oracles on top of the existing test oracles
encoded in developers’ test code. These oracles are effective
in identifying various types of bugs, with low false positives.

4.3.1 Exception Oracle
This oracle flags a fault-injection test outcome as a potential

bug if 1) the test fails with an exception, 2) the exception is
created in application code rather than in test code, and 3)
the exception is inconsistent with the injected fault. We now
explain the rationale behind the three conditions.

When a test fails with an exception as a result of an injected
fault, it may not always mean a bug. For example, in the appli-
cations we use for our evaluation, many tests directly interact
with a cloud service (e.g., to setup the test environment) but
without proper error handling. If Rainmaker injects faults into
such REST calls, the test will fail with an exception. How-
ever, the failure does not indicate application bugs. Rainmaker
applies the second condition to filter out test failures due to
exceptions created in test code, based on the exception call
stack. Note that Rainmaker avoids injecting faults into REST
calls with call sites from the test code.

However, not all test failures due to exceptions created in
application code are bugs. For example, a utility method of
an application may intentionally propagate an exception to
the upper layer and expect it to be handled there. When a test
for this utility fails due to not handling the exception, the test
failure is expected, and it does not indicate a bug.

Rainmaker applies the third condition to only report bugs
when the final exception that causes the test failure is incon-
sistent with the injected fault (by searching the injected HTTP

public async Task Receive_SendOne_Received()
{ ...
messages = await client.ReceiveAsync(queue);
Assert.Contains(messages,
m => m.tag == tag);

} /* Trio/MessagingTest.cs */

Assertion failure:
Expect: True; Actual: False
(tag not found in messages)

timeout

Figure 8: An assertion utilized by Rainmaker to detect a bug of silent
semantic violation in Storage.NET backed by AWS SQS. When time-
outs are injected, ReceiveAsync dequeues multiple times, causing
an empty message list returned, which fails the assertion.

status code or error code in the exception stack). The intu-
ition is that, if the test fails due to an error different from
the injected fault, it indicates that the fault was once han-
dled (it shows the developer’s intention to handle it), but the
handling is inappropriate (at least insufficient) and causes a
different error that fails the test. This oracle can capture bugs
of throwing unrelated exceptions as well as silent bugs of
semantic violations and state divergence which do not cause
immediate exceptions but result in exceptions eventually. Fig-
ure 7 shows such an example, where a 503 fault injected
to CreateIfNotExistsAsync leads to a 404 exception from
UploadFromByteArrayAsync and fails the test.

Note that the oracle is incomplete. If an application misses
error handling (§3.1), exceptions exposed by the test could be
a bug. However, at the unit test level, it is indeterminate.

Relaxing the oracle. With all three conditions, the oracle
above is conservative. One can relax it to identify other types
of likely bugs. If the developer is testing an application or
running a system test (instead of a unit test), she can disable
the third condition so that Rainmaker flags any failure (e.g.,
crash) due to exceptions from appliation code as a bug. This
is because Rainmaker only injects transient faults that are
expected to be handled gracefully.

4.3.2 Assertion Violation Oracle
This oracle flags a fault-injection test outcome as a poten-

tial bug if the test fails due to an assertion violation (and not
an unhandled exception). Intuitively, transient faults injected
by Rainmaker should not impair semantic correctness of appli-
cation code; hence existing assertions should not be violated
if the faults are properly handled. The assertions in test code
could be brittle to fault injection [45], i.e., an assertion viola-
tion is not a bug, but caused by the fault injection changing
application runtime behavior. In practice, we find such brittle
assertions are small in numbers, as discussed in §5.2. The
assertion oracle can capture bugs of silent semantic viola-
tions and state divergence. Figure 8 shows how Rainmaker
leverages the existing assertion to capture a silent semantic
violation in Storage.NET [19].

4.4 Diagnosis Support

Associating source-code information with faults. Diag-
nosing and localizing bugs in application code triggered by

HTTP-level faults can be challenging without source-code
context. This can be true even when the developer knows the
fault-injected REST API or SDK API (via instrumentation),
because they can be invoked by multiple program locations.

To help developers debug the test failures, Rainmaker asso-
ciates the fault injection with source-code information in the
form of the call site, together with the call stack of runtime ex-
ceptions or assertions (§4.3). We find the REST API call site
and exception/assertion call stack are critical to debugging.
They help developers to understand what and where fault(s)
were injected and reason about the error propagation inside
application code. One can further apply existing techniques
to automatically reconstruct the failure execution (e.g., [85]).

Reproducing bugs. Rainmaker can reproduce a reported
bug because all fault injections for a test are determined by
the test planner (§4.2.2). If an injected fault exposes a bug,
Rainmaker can rerun the planned fault injection to reproduce
the triggered bug. If the test is nondeterministic, it may take
several runs to reproduce the bug. In our experience, the error
handling behavior for REST calls is typically local to the call
and is rarely affected by nondeterminism of test execution.

4.5 Implementation
We have implemented Rainmaker for Windows. Its HTTP

interception is implemented using MockServer [18], with
fault-injection policies implemented as MockServer rules in
Java. Rainmaker registers a system proxy for Windows Inter-
net Services to forward all HTTP traffic to the MockServer
proxy. This enables Rainmaker to inject faults to any applica-
tion that issues REST APIs. The oracles are implemented in
Python, which analyzes the raw test results and logs.

Rainmaker currently supports coverage metrics C2–C4 for
.NET applications only, which needs dynamic instrumenta-
tion to record and propagate call site information (§4.2.2).
The instrumentation is implemented using the .NET profiling
API [65] that enables changing bytecode of a method before
it is JITed. Rainmaker inserts call site information in HTTP
headers by instrumenting four HTTP API families from the
.NET core library that cover all outgoing HTTP messages. We
believe the same mechanism can be implemented for Java.

To support a new cloud service in Rainmaker only
takes two inputs in the form of configurations: 1) the
SDK namespace (e.g., Azure.Storage* for Azure Storage
SDK) and 2) the request-ID tag of the cloud service (e.g.,
x-ms-client-request-id for Azure Storage services and
amz-sdk-invocation-id for AWS S3). The former instructs
Rainmaker what call sites to record, and the latter identifies a
request and its retries (they all have the same request ID).

5 Evaluation
Our evaluation addresses the following questions: 1) Can

Rainmaker find new bugs in real-world cloud-backed appli-
cations? 2) Are Rainmaker’s testing results trustworthy? 3)

Application Cloud Service # Stars # LOC Selected Tests

Alpakka Queue 106 14K 9
AttachmentPlugin Blob 67 1.3K 32
BotBuilder Blob, Queue 758 18K 67
DistributedLock Blob 838 17.1K 30
EF Core CosmosDB 11.7K 842.4K 420
FHIR Server CosmosDB 897 112.8K 202
Insights Blob, Queue, Table 20 51.7K 147
IronPigeon Blob 255 5.4K 7
Orleans Blob, Queue, Table 8.8K 187K 155
Sleet S3 276 18.7K 2
Storage.NET Blob, Queue, S3, SQS 567 12.4K 36

Table 4: The cloud-backed applications used in our evaluation.

What is the tradeoff between running time and coverage?

• §5.1: Rainmaker finds 73 new bugs in all 11 evaluated
cloud-backed applications, which represent a swathe of
reliability issues. So far, 55 of them have been confirmed,
and 51 have been fixed by the developers.

• §5.2: Rainmaker’s test oracles have a low false-positive
rate (1.96%) with regards to test failures.

• §5.3: Rainmaker significantly reduces running time com-
pared to exhaustive fault injection with coverage guarantee.

Evaluation setup. We evaluated Rainmaker on 11 popular
.NET applications that use six different cloud services from
two cloud service providers, Azure and AWS (Table 4). These
applications are mature and widely used; many are main-
tained by software companies, such as Orleans, BotBuilder,
EF Core, FHIR Server from Microsoft, Insights from NuGet,
and Alpakka from Petabridge. They use six cloud services:
Blob Storage [7], Queue Storage [11], Table Storage [12],
and CosmosDB [9] from Azure, and Simple Storage Service
(S3) [1] and Simple Queue Service (SQS) [4] from AWS. We
configure Rainmaker to support these services (§4.5).

We apply Rainmaker to existing test suites of the applica-
tions. Rainmaker automatically selects tests that interact with
the cloud services from the test suite by monitoring HTTP traf-
fic during the reference run (§4.2.2). The number of selected
tests varies from 2 to 420 across the applications (Table 4),
including both unit and system tests. We differentiate unit and
system tests based on their naming conventions.

All the tests that interact with Azure cloud services are run
with emulators: Azurite [68] for Blob, Queue, and Table and
the CosmosDB emulator [63] for CosmosDB. The tests that
interact with AWS are run with the real S3/SQS services; we
did not find an official AWS emulator.

5.1 Finding New Bugs
Rainmaker finds a total of 73 new bugs in the evaluated

applications (Table 5). Those bugs include all the bug patterns
in the taxonomy (§3): 29 bugs of no error handling, 23 bugs
of throwing unrelated exceptions, four bugs of silent semantic
violations, and 17 bugs of state divergence. Rainmaker finds
bugs in every application, showing the error-proneness of

Application No Error Throw New Semantic State TotalHandling Exception Violation Divergence

Alpakka 0 0 1 1 2
AttachmentPlugin 0 0 0 2 2
BotBuilder 0 2 0 2 4
DistributedLock 0 2 0 0 2
EF Core 7 0 0 0 7
FHIR Server 11 0 0 0 11
Insights 0 10 0 0 10
IronPigeon 0 1 0 0 1
Orleans 0 5 2 11 18
Sleet 0 2 0 0 2
Storage.NET 11 1 1 1 14

Total 29 23 4 17 73

Table 5: New bugs detected by Rainmaker across the applications.

handling transient faults with cloud-based programming. We
have reported 66 (out of 73) bugs. So far, 55 of them have
been confirmed, and 51 of them have been fixed.

Many of the detected bugs have severe consequences, such
as unexpected application termination, data loss/inaccessibil-
ity, and resource leaks (Table 6). All these consequences are
triggered by transient faults against one REST API call.

Rainmaker detects bugs that are unlikely to be exposed
by randomized fault injection. For example, a bug [36] in
DistributedLock is only triggered when timeout happens to
the response of a specific SDK API call site. The test used
for detecting this bug issues 900+ requests in total; only four
requests are from that specific call site. Rainmaker can con-
sistently detect this bug as it systematically exercises the call
sites of the REST API calls (§4.2.2).

Table 7(a) shows that all four fault injection policies (Fig-
ure 6) employed by Rainmaker are effective in finding bugs.
The four policies address different fault scenarios and are
complementary to each other. No policy detects all the bugs.
Similarly, Table 7(b) shows that oracles are complementary
to each other. For example, all the semantic violation bugs
are captured by assertions as they do not cause exceptions.

The 73 bugs cause 2,654 test failures in total. To inspect
them, we cluster test failures based on (a) the application call
site that invokes the REST API where fault(s) are injected and
(b) the exception stack trace in the application namespace, or
assertion. For two test failures with both (a) and (b) being the
same, they are considered to have the same root cause, i.e.,
injecting to the same API call site causes the same exception
stack trace in application namespace or assertion violation.

No error handling. Rainmaker found 29 bugs of this type,
where neither the SDK nor the application handles the injected
faults. These bugs are all from applications that use Azure
Storage SDK with versions before 12.3.0 and the CosmosDB
SDK; the former does not retry timeouts, and the latter does
not retry with our single-region setting. The applications using
these SDKs are expected to handle transient errors but do not
have error handling. These bugs are manifested in system
tests when Rainmaker injects faults into the REST calls.

https://github.com/akkadotnet/Alpakka
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin
https://github.com/microsoft/botbuilder-dotnet
https://github.com/madelson/DistributedLock
https://github.com/dotnet/efcore
https://github.com/microsoft/fhir-server
https://github.com/NuGet/Insights
https://github.com/AArnott/IronPigeon
https://github.com/dotnet/orleans
https://github.com/emgarten/Sleet
https://github.com/aloneguid/storage

Consequence Example # Bugs

Externalizing IronPigeon-133: Deletion operations perform
unrelated exception on non-existent resources [46]. 36

AttachmentPlugin-277: Containers cannot beOperation failure created due to transient error [24]. 35

Incorrect results BotBuilder-5787: The timestamp metadata of
or states blobs is not set correctly [31]. 13

Application crash FHIR Server-2732: FHIR Server can crash
unexpectedly upon transient faults [38]. 11

Data loss or BotBuilder-6407: Activities that should be
inaccessibility logged are lost [32]. 4

Orleans-7790: Redundant messages were addedResource leak incorrectly to the Queue service [72]. 2

Table 6: Consequences of the bugs found by Rainmaker. One bug
can lead to multiple consequences.

Throwing unrelated exceptions. Rainmaker found 23 bugs
of this type. Rainmaker triggers these bugs by injecting time-
out to the response path after a request takes effect at the cloud
service (see Figure 3). While the bug in Figure 3 is captured
by an assertion on the number of created blobs, many other
bugs are captured by the exception oracle (the exception is
mostly inconsistent with the injected fault). Such bugs can
be avoided if the cloud service can collapse the retries: If the
first attempt is successful, the cloud service should ignore the
following retries of the same SDK API call. This requires the
cloud service to identify the retries of each SDK API call,
which can be specified by the SDK when it issues a retry.

Silent semantic violations. Rainmaker found four bugs of
this type. All of them are caused by retrying non-idempotent
REST APIs (e.g., ReceiveMessagesAsync in Figure 4). Rain-
maker detects these bugs by injecting timeout to trigger non-
idempotent retries and leveraging assertions to catch semantic
violations (as in Figure 8). Different from traditional system
services (e.g., file systems), cloud services seldom have stan-
dard API specifications like POSIX for file system APIs; doc-
uments are often outdated or incomplete. Without precisely
understanding the semantic and side effect of each REST API,
it is difficult for developers to avoid silent semantic violations.

State divergence. Rainmaker found 17 bugs of this type.
Some applications maintain local data structures to reflect
the state of the remote resources hosted by the cloud service.
Rainmaker triggers state divergence by injecting 5XX error
codes to the request path or timeout to the response path (e.g.,
Figure 5). Although the inconsistencies do not immediately
lead to exceptions, Rainmaker can still catch them when the
test throws exceptions (e.g., Figure 7) or fails assertions.

5.2 False Positives
While identifying bugs with its test oracles, Rainmaker in-

troduces a very low false positive rate of 1.96% (52/2,654).
It reports in total 2,654 test failures for the evaluated applica-
tions. Among the failures reported, only 52 of them were false
alarms. The low false positive rate is attributed to Rainmaker’s
exception oracles (see §4.3.1). If Rainmaker directly reports
exceptions thrown by unit tests, it would have reported 3.07

Application Fault Injection Policy
P1 P2 P3 P4

Alpakka 2 1 1 0
AttachmentPlugin 0 1 2 1
BotBuilder 2 1 2 1
DistributedLock 2 0 0 0
EF Core 7 n/a 7 n/a
FHIR Server 11 n/a 11 n/a
Insights 10 0 0 0
IronPigeon 1 0 0 0
Orleans 17 11 11 11
Sleet 2 0 0 0
Storage.NET 13 12 12 12

Total 67 26 46 25

Test Oracle
Exp (Unit) Exp (Sys) Assert.

0 0 2
2 0 0
3 0 1
2 0 0
0 7 0
0 11 0
10 0 0
1 0 0
16 0 2
2 0 0
2 11 1

38 29 6

Table 7: The breakdown of the number of bugs captured by the fault
injection policies (left) and oracles (right). For EF Core and FHIR
Server, the four policies are reduced to two, because CosmosDB
SDK does not retry in our setting (single region). For the exception
oracle (“Exp”), we differentiate unit tests and system tests. Note that
one bug can be exposed by multiple fault injection policies.

times more test failures. To validate that the oracles filter out
little true alarms, we randomly sample a hundred exceptions
that are filtered out by Rainmaker’s exception oracle and find
that none of them indicates a bug.

Among the 52 false alarms, 10 of them come from five
tests of Insights. These tests exercise scenarios where a client
issues invalid requests and expects the return of certain error
codes (e.g., 404 Not Found). Since Rainmaker injects 5XX
on the request path (P3 and P4 in Figure 6), the REST call
fails by assertions on the original error codes. To avoid those
false alarms needs to understand those REST calls, e.g., based
on information from the reference run. Note that Rainmaker
does not inject faults on an HTTP response that already has
an error code.

The other 42 false alarms were caused by 14 tests from
Alpakka and IronPigeon. Those tests use a small connec-
tion timeout that was exceeded due to the fault injection,
resulting in either assertion failures or inconsistent exceptions.
These tests are considered flaky tests in software testing liter-
ature [54]. Strictly speaking, flaky tests should not be counted
as false alarms. However, detecting flaky tests is not a goal
of Rainmaker, and the flakiness is indeed triggered by fault
injection (it can also be triggered by slow connections).

5.3 Running Time with Coverage
Rainmaker takes 0.57–212.77 hours to test each application

under coverage metric, C4 (Table 3), as shown in Table 8.
All the experiments were run on a Windows 10 Pro with
AMD Ryzen 9 5900X 3.70 GHz CPU and 32 GB memory.
Over 93.54% of the running time is spent on executing fault
injection test runs. Rainmaker also spends 0.02–16.61 hours
to 1) conduct the vanilla run and 2) generate the test plan. The
test plan generation using a linear programming (LP) solver
takes only 1.46–3.67 seconds across the applications and is
negligible compared with the time for vanilla test runs. The
numbers of constraints and variables range from 14 to 241 and

Application Running Time (Machine Hours) # Fault Injection
Test Planning Fault Injection Total Test Runs

Alpakka 0.02 0.97 0.99 196
AttachmentPlugin 0.04 2.83 2.87 416
BotBuilder 0.32 10.36 10.68 888
DistributedLock 0.13 4.97 5.10 572
EF Core 10.65 159.60 170.25 4786
FHIR Server 16.61 196.16 212.77 6428
Insights 0.36 10.97 11.33 3056
IronPigeon 0.06 0.51 0.57 120
Orleans 2.57 53.17 55.74 3804
Sleet 0.11 0.63 0.74 72
Storage.NET 2.30 40.27 42.57 1512

Table 8: Running time of Rainmaker in machine hours, for the
most expensive coverage metric C4. Test planning includes both the
vanilla test run and test plan generation (the latter takes seconds).

Alpakka

Atta
chmentP

lugin

BotB
uild

er

Dist
rib

utedLock

EF Core

FHIR
Server

Insig
hts

Iro
nPigeon

Orle
ans

Sleet

Storage.N
ET

101

102

103

104

105

#
T

es
t

R
un

s

Baseline

C4

C3

C2

C1

0
2
4
6
8
10
12
14
16
18
20

#
B

ug
s

Figure 9: The number of fault injection test runs of each coverage
metric, C1–C4 in Table 3 (bars) and the number of bugs detected by
each coverage metric (dots). Baseline refers to exhaustively injecting
faults to all the REST API calls of all the tests.

from 18 to 3214, respectively. Note that test plan generation
is a one-time effort and is done offline; fault injection takes
multiple test runs and is more time-consuming.

Rainmaker’s test planning avoids exhaustively injecting
faults in every REST call (the baseline). Figure 9 shows the
number of fault injection test runs each coverage metric can
reduce, compared to the baseline. Overall, Rainmaker with C4
(default coverage) reduces on average 64.47% of test runs for
each application compared to the baseline. In particular, C4
reduces 394,172 (99.04%) test runs for Orleans alone because
Orleans has stress tests that repeatedly exercise the same SDK
API call site in large loops. C4 reduces fault injection runs by
“deduplicating” REST calls with the same call site. Without
the reduction, Rainmaker would take 588 days to test Orleans.

In terms of bug finding effectiveness, C4 covers all the tests
and REST calls that are covered by C1–C3. Thus, C4 detects
all the bugs that are detected by C1–C3.

6 Discussion and Limitation
Rainmaker’s effectiveness depends on the adequacy of the

existing test suite, in particular, tests that interact with cloud
services. Such tests may not be abundant (Table 4). For exam-
ple, in Microsoft Orleans, only 155 out of 7,002 tests interact
with cloud services. A more common testing practice is to
mock REST APIs [53]. Our future work is to auto-rewrite
mocked tests into tests that can be utilized by Rainmaker.

Rainmaker is not cheap. It may need to run a test multiple
times, each injecting different fault(s) or to a different REST
call. For big test suites, Rainmaker would need significant
machine hours (Table 8). In fact, our evaluation shows that
many bugs trigger multiple test failures (§5.1). A future work
is to reduce the cost using test selection techniques [83].

Rainmaker currently only targets faults that occur in one
interaction of REST API call initiated by the application and
the subsequent retries (§3). We are investigating how to inject
faults to multiple correlated API call interactions which has a
larger fault space and a more complex fault model.

Rainmaker can be extended to test applications under poten-
tial cloud service bugs. In our evaluation, we find that cloud
services have various correctness issues. For example, we ob-
serve that the same REST API of AWS S3 has different consis-
tency guarantees at different regions [25], which can break ap-
plication assumptions. Also, the error behavior is often opaque
and hard to reason, e.g., the side effect of a non-idempotent
API call when it returns 500 (InternalServerError).

Not every bug found by Rainmaker is easy to fix. For exam-
ple, timeouts on the response path make it hard for SDK/ap-
plication to know whether the failed request has taken effect
at the cloud service. Server-side support such as versioning
(e.g., based on HTTP ETag) and transaction-like API support
could potentially help non-idempotent APIs. Moreover, SDKs
should not blindly retry non-idempotent APIs, which however
is not an uncommon practice, as shown in Table 1.

Our current prototype of Rainmaker focuses on .NET ap-
plications. We believe that the prototype can be generally
extended to support applications in other languages as well.
The high-level idea of injecting faults with an HTTP proxy is
independent of the programming language of the target appli-
cation. The only .NET-specific component in our prototype
is the one that computes the coverage metrics C2, C3, and C4
(in Table 3) by using .NET profiling API [65] for dynamic
instrumentation and .NET inheritable thread-local storage
(ITLS) [64] for propagating call-site information. Neither dy-
namic instrumentation nor ITLS is unique to .NET; they are
already available or can be supported in other languages and
runtimes such as Java.

7 Related Work
Our work focuses on push-button tooling to help develop-

ers address emerging reliability challenges of cloud-backed
applications. The techniques that embody Rainmaker have
lineages of error-handling analysis and fault injection.

• Error-handling code analysis. It is known that error han-
dling is a main root cause of production failures of software
systems [40, 41, 84]. Prior work developed static analysis
for error-handling code to search missing logs and TODOs in
error-handling code [84,86], check error specifications [48],
and understand error propagation [41, 77, 82].

• Fault injection. Prior work developed fault injection tech-
niques for traditional software applications [29, 35, 59, 87]
and for distributed backend systems (e.g., storage and
data processing systems) that empower modern cloud ser-
vices [16, 20, 21, 33, 34, 40, 43, 51, 55–57, 69, 73, 80]. They
implicitly or explicitly target error-handling code. More-
over, many existing fault injection tools support injection
at the HTTP layer [37, 47].

Unfortunately, we realized that none of the above tech-
niques support a push-button tool that is generic, widely ap-
plicable to cloud-backed applications because they all have
one or more of the following limitations. First, many fault
injection tools only provide mechanisms without fully au-
tomatic policies beyond randomization or oracles beyond
crashes [6, 21, 35, 40, 43, 44, 51, 58, 61, 73, 75]. Developers
need to manually implement them, which is nontrivial. Sec-
ond, many techniques use application or domain knowledge
to devise policies and oracles [16,20,33,34,55,56,69,80]. For
example, fault injection for distributed databases checks con-
sistency and isolation properties by injecting node crashes and
network partitions [16, 52]. These techniques cannot be used
as a common, basic utility for diverse types of applications.
Third, fault injection at the program level [35, 50, 59, 60, 87]
is fundamentally limited to cloud-backed applications: 1) pro-
gram errors (exceptions and errno) are too coarse-grained to
expose certain bug patterns (e.g., silent semantic violations)
which need fine-grained injection at the HTTP layer; 2) it
is nontrivial to construct exception objects—error handling
of cloud-backed applications is based on not only exception
types, but also HTTP status codes (Table 1); 3) few program
fault injection considers cloud states, but assumes a single pro-
gram. Rainmaker instead injects faults at the REST interface,
effectively addressing the above three limitations.

The early form of cloud-backed applications is mobile apps
that interact with cloud backends via REST APIs. Unlike
today’s cloud services, the cloud backend is specific to an
app and is not widely used as a building block of generic
application development. Most fault injection tools for mobile
apps focus on GUI testing [74, 79]; few considers app-cloud
interactions. Rainmaker applies to cloud-backed mobile apps.

8 Concluding Remarks
Rainmaker serves as a first step tooling to help developers

test application reliability under the cloud-based fault model
conveniently, when writing cloud-backed code. Despite being
a simple tool, Rainmaker can effectively detect bugs in many
existing cloud-backed applications, indicating the challenge
and error-proneness of correctly handling transient errors.
Our goal is to make Rainmaker a basic utility running against
every cloud-backed application to detect critical bugs at devel-
opment time. We hope to inspire more advanced, specialized
tooling and raise discussions on cloud service support and
SDK designs to eliminate reliability threats in the first place.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Raja

Sambasivan, for their insightful comments. We thank Shan Lu,
Darko Marinov, Lalith Suresh, and Jun Zeng for valuable feed-
back and discussions that helped improve this work. We thank
Yifei Song for his help on the evaluation and Shuai Wang and
Jinghao Jia for helping with the machine setup. We thank all
the cloud-backed application developers who engaged with us
and reviewed our reports and patches. This work was funded
in part by NSF CNS-2130560, SHF-1816615, CNS-2145295,
and Microsoft Azure credits.

References
[1] Amazon S3. https://aws.amazon.com/s3/, 2022.

[2] Amazon Simple Queue Service Common Errors. https:
//docs.aws.amazon.com/AWSSimpleQueueService/
latest/APIReference/CommonErrors.html, 2022.

[3] Amazon Simple Storage Service Error Responses.
https://docs.aws.amazon.com/AmazonS3/latest/
API/ErrorResponses.html, 2022.

[4] Amazon SQS. https://aws.amazon.com/sqs/, 2022.

[5] AWS Cloud Products. https://aws.amazon.com/products,
2022.

[6] AWS Fault Injection Simulator. https://aws.amazon.com/
fis/, 2022.

[7] Azure Blob Storage. https://azure.microsoft.com/en-
us/services/storage/blobs/, 2022.

[8] Azure Blob Storage error codes. https://learn.microsoft.
com/en-us/rest/api/storageservices/blob-service-
error-codes, 2022.

[9] Azure Cosmos DB. https://azure.microsoft.com/en-
us/services/cosmos-db/, 2022.

[10] Azure products. https://azure.microsoft.com/en-us/
products, 2022.

[11] Azure Queue Storage. https://azure.microsoft.com/en-
us/services/storage/queues/, 2022.

[12] Azure Table Storage. https://azure.microsoft.com/en-
us/services/storage/tables/, 2022.

[13] dotnet/orleans. https://github.com/dotnet/orleans,
2022.

[14] Google Cloud products. https://cloud.google.com/
products, 2022.

[15] HTTP Status Codes for Azure Cosmos DB. https:
//docs.microsoft.com/en-us/rest/api/cosmos-
db/http-status-codes-for-cosmosdb, 2022.

[16] Jepsen. https://jepsen.io/, 2022.

[17] microsoft/botbuilder-dotnet. https://github.com/
microsoft/botbuilder-dotnet, 2022.

[18] MockServer. https://www.mock-server.com/, 2022.

[19] Storage.NET. https://github.com/aloneguid/storage,
2022.

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
https://aws.amazon.com/sqs/
https://aws.amazon.com/products
https://aws.amazon.com/fis/
https://aws.amazon.com/fis/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/products
https://azure.microsoft.com/en-us/products
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/
https://github.com/dotnet/orleans
https://cloud.google.com/products
https://cloud.google.com/products
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://jepsen.io/
https://github.com/microsoft/botbuilder-dotnet
https://github.com/microsoft/botbuilder-dotnet
https://www.mock-server.com/
https://github.com/aloneguid/storage

[20] ALAGAPPAN, R., GANESAN, A., PATEL, Y., PILLAI, T. S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Correlated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’16) (Nov. 2016).

[21] ALQURAAN, A., TAKRURI, H., ALFATAFTA, M., AND AL-
KISWANY, S. An Analysis of Network-Partitioning Failures
in Cloud Systems. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

[22] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H.,
PADHYE, J., LOO, B. T., AND OUTHRED, G. 007: Democrat-
ically Finding the Cause of Packet Drops. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18) (Apr. 2018).

[23] ATLIDAKIS, V., GODEFROID, P., AND POLISHCHUK, M.
RESTler: Stateful REST API Fuzzing. In Proceedings of
the 37th International Conference on Software Engineering
(ICSE’19) (May 2019).

[24] ATTACHMENTPLUGIN-277. Transient error happening in
container existence check will lead to container not found ex-
ception. https://github.com/SeanFeldman/ServiceBus.
AttachmentPlugin/issues/277, 2022.

[25] AWS-SDK-NET-2084. The retry request of PutBucket will
behave differently between regions. https://github.com/
aws/aws-sdk-net/discussions/2084, 2022.

[26] AWS-SDK-NET-2102. 1-to-N Mappings between SDK API
and REST APIs. https://github.com/aws/aws-sdk-net/
discussions/2102, 2022.

[27] AZURE/AZURE-SDK-FOR-NET-31001. 1-to-N Mappings be-
tween SDK API and REST APIs. https://github.com/
Azure/azure-sdk-for-net/issues/31001, 2022.

[28] AZURE/AZURE-SDK-FOR-NET-9670. Retry on 408, 500, 502,
504 status codes. https://github.com/Azure/azure-sdk-
for-net/pull/9670, 2022.

[29] BANABIC, R., AND CANDEA, G. Fast Black-Box Testing of
System Recovery Code. In Proceedings of the 7th European
Conference on Computer Systems (EuroSys’12) (Apr. 2012).

[30] BOTBUILDER-DOTNET-5778. _checkedContainers can be-
come inconsistent with blob storage and further lead to
unhandled exception. https://github.com/microsoft/
botbuilder-dotnet/issues/5778, 2021.

[31] BOTBUILDER-DOTNET-5787. Metadata of blob can be
missing due to transient error which leads to unhandled
exception. https://github.com/microsoft/botbuilder-
dotnet/issues/5787, 2022.

[32] BOTBUILDER-DOTNET-6407. Activities that should be logged
are missing due to transient network errors. https://github.
com/microsoft/botbuilder-dotnet/issues/6407, 2022.

[33] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND

REXFORD, J. A NICE Way to Test OpenFlow Applications.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI’12) (Apr. 2012).

[34] CHEN, H., DOU, W., WANG, D., AND QIN, F. CoFI:
Consistency-Guided Fault Injection for Cloud Systems. In
Proceedings of the 35th ACM/IEEE International Conference
on Automated Software Engineering (ASE’20) (Sept. 2020).

[35] CHRISTAKIS, M., EMMISBERGER, P., GODEFROID, P., AND

MÜLLER, P. A General Framework for Dynamic Stub Injec-
tion. In Proceedings of the 39th International Conference on
Software Engineering (ICSE’17) (May 2017).

[36] DISTRIBUTEDLOCK-132. Transient error leads to unhandled
409 when releasing an Azure lease. https://github.com/
madelson/DistributedLock/issues/132, 2022.

[37] ENVOY DOCS. Envoy Fault Injection. https:
//www.envoyproxy.io/docs/envoy/latest/api-
v3/extensions/filters/http/fault/v3/fault.proto,
2022.

[38] FHIR SERVER-2732. Retry other HTTP error codes from Cos-
mos DB? https://github.com/microsoft/fhir-server/
issues/2732, 2022.

[39] GANGER, G. R., MCKUSICK, M. K., SOULES, C. A. N.,
AND PATT, Y. N. Soft Updates: A Solution to the Metadata
Update Problem in File Systems. ACM Transactions on Com-
puter Systems (TOCS) 18, 2 (May 2000), 127–153.

[40] GUNAWI, H. S., DO, T., JOSHI, P., ALVARO, P., HELLER-
STEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., SEN, K., AND BORTHAKUR, D. Fate and Destini: A
Framework for Cloud Recovery Testing. In Proceedings of the
8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’11) (Mar. 2011).

[41] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEAU, R. H., AND LIBLIT, B. EIO: Er-
ror Handling is Occasionally Correct. In Proceedings of the
6th USENIX Conference on File and Storage Technologies
(FAST’08) (Feb. 2008).

[42] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R.,
MALTZ, D., LIU, Z., WANG, V., PANG, B., CHEN, H., LIN,
Z.-W., AND KURIEN, V. Pingmesh: A Large-Scale System
for Data Center Network Latency Measurement and Analy-
sis. In Proceedings of the 2015 ACM SIGCOMM Conference
(SIGCOMM’15) (Aug. 2015).

[43] HEORHIADI, V., RAJAGOPALAN, S., JAMJOOM, H., REITER,
M. K., AND SEKAR, V. Gremlin: Systematic Resilience Test-
ing of Microservices. In Proceedings of the IEEE 36th In-
ternational Conference on Distributed Computing Systems
(ICDCS’16) (June 2016).

[44] HUNT, G., AND BRUBACHER, D. Detours: Binary Intercep-
tion of Win32 Functions. In Proceedings of the 3rd USENIX
Windows NT Symposium (July 1999).

[45] HUO, C., AND CLAUSE, J. Improving Oracle Quality by
Detecting Brittle Assertions and Unused Inputs in Tests. In
Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE’14) (Nov.
2014).

[46] IRONPIGEON-133. make blob deletion tolerant of transient
errors. https://github.com/AArnott/IronPigeon/pull/
133, 2022.

https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin/issues/277
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin/issues/277
https://github.com/aws/aws-sdk-net/discussions/2084
https://github.com/aws/aws-sdk-net/discussions/2084
https://github.com/aws/aws-sdk-net/discussions/2102
https://github.com/aws/aws-sdk-net/discussions/2102
https://github.com/Azure/azure-sdk-for-net/issues/31001
https://github.com/Azure/azure-sdk-for-net/issues/31001
https://github.com/Azure/azure-sdk-for-net/pull/9670
https://github.com/Azure/azure-sdk-for-net/pull/9670
https://github.com/microsoft/botbuilder-dotnet/issues/5778
https://github.com/microsoft/botbuilder-dotnet/issues/5778
https://github.com/microsoft/botbuilder-dotnet/issues/5787
https://github.com/microsoft/botbuilder-dotnet/issues/5787
https://github.com/microsoft/botbuilder-dotnet/issues/6407
https://github.com/microsoft/botbuilder-dotnet/issues/6407
https://github.com/madelson/DistributedLock/issues/132
https://github.com/madelson/DistributedLock/issues/132
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://github.com/microsoft/fhir-server/issues/2732
https://github.com/microsoft/fhir-server/issues/2732
https://github.com/AArnott/IronPigeon/pull/133
https://github.com/AArnott/IronPigeon/pull/133

[47] ISTIO DOCS. Istio Fault Injection. https://istio.
io/latest/docs/tasks/traffic-management/fault-
injection/, 2022.

[48] JANA, S., KANG, Y., OHIO, S. R., AND RAY, B. Automat-
ically Detecting Error Handling Bugs Using Error Specifica-
tions. In Proceedings of the 25th USENIX Security Symposium
(Aug. 2016).

[49] JAVA API SPECIFICATION. Class InheritableThreadLo-
cal<T>. https://docs.oracle.com/javase/7/docs/api/
java/lang/InheritableThreadLocal.html, 2022.

[50] JIANG, Z.-M., BAI, J.-J., LU, K., AND HU, S.-M. Fuzzing
Error Handling Code using Context-Sensitive Software Fault
Injection. In Proceedings of the 29th USENIX Security Sympo-
sium (Aug. 2020).

[51] JU, X., SOARES, L., SHIN, K. G., RYU, K. D., AND SILVA,
D. D. On Fault Resilience of OpenStack. In Proceedings of
the 12th ACM Symposium on Cloud Computing (SOCC’13)
(Oct. 2013).

[52] KINGSBURY, K., AND ALVARO, P. Elle: Inferring Isolation
Anomalies from Experimental Observations. In Proceedings
of the VLDB Endowment (Nov. 2020).

[53] KRYMETS, P. Unit testing and mocking with Azure SDK
.NET. https://devblogs.microsoft.com/azure-sdk/
unit-testing-and-mocking/, 2020.

[54] LAM, W., MUŞLU, K., SAJNANI, H., AND THUM-
MALAPENTA, S. A Study on the Lifecycle of Flaky Tests. In
Proceedings of the 42nd International Conference on Software
Engineering (ICSE’20) (May 2020).

[55] LEESATAPORNWONGSA, T., HAO, M., JOSHI, P., LUKMAN,
J. F., AND GUNAWI, H. S. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems.
In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[56] LU, J., LIU, C., LI, L., FENG, X., TAN, F., YANG, J., AND

YOU, L. CrashTuner: Detecting Crash-Recovery Bugs in
Cloud Systems via Meta-Info Analysis. In Proceedings of
the 26th ACM Symposium on Operating System Principles
(SOSP’19) (Oct. 2019).

[57] MAJUMDAR, R., AND NIKSIC, F. Why is Random Testing
Effective for Partition Tolerance Bugs? In Proceedings of the
45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL’18) (Jan. 2018).

[58] MARINESCU, P. D., BANABIC, R., AND CANDEA, G. An
Extensible Technique for High-Precision Testing of Recovery
Code. In Proceedings of the 2010 USENIX Annual Technical
Conference (USENIX ATC’10) (June 2010).

[59] MARINESCU, P. D., AND CANDEA, G. LFI: A Practical
and General Library-Level Fault Injector. In Proceedings of
the 39th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’09) (June 2009).

[60] MARINESCU, P. D., AND CANDEA, G. Efficient Testing of
Recovery Code Using Fault Injection. ACM Transactions on
Computer Systems (TOCS) 29, 4 (Dec. 2011), 1–38.

[61] MEIKLEJOHN, C. S., ESTRADA, A., SONG, Y., MILLER, H.,
AND PADHYE, R. Service-Level Fault Injection Testing. In
Proceedings of the 2013 ACM Symposium on Cloud Computing
(SOCC’21) (Nov. 2021).

[62] MICROSOFT DOCS. AzureQueueDataMan-
ager.GetQueueMessage Method. https://learn.
microsoft.com/en-us/dotnet/api/orleans.
azureutils.azurequeuedatamanager.getqueuemessage,
2022.

[63] MICROSOFT DOCS. Install and use the Azure Cos-
mos DB Emulator for local development and testing.
https://learn.microsoft.com/en-us/azure/cosmos-
db/local-emulator, 2022.

[64] MICROSOFT DOCS. .NET CallContext Class.
https://docs.microsoft.com/en-us/dotnet/api/
system.runtime.remoting.messaging.callcontext,
2022.

[65] MICROSOFT DOCS. .NET profiling. https://learn.
microsoft.com/en-us/dotnet/framework/unmanaged-
api/profiling/profiling-overview, 2022.

[66] MICROSOFT DOCS. Table Storage error codes.
https://learn.microsoft.com/en-us/rest/api/
storageservices/table-service-error-codes, 2022.

[67] MICROSOFT DOCS. Transient fault handling. https:
//learn.microsoft.com/en-us/azure/architecture/
best-practices/transient-faults, 2022.

[68] MICROSOFT DOCS. Use the Azurite emulator for local Azure
Storage development. https://docs.microsoft.com/en-
us/azure/storage/common/storage-use-azurite, 2022.

[69] MOHAN, J., MARTINEZ, A., PONNAPALLI, S., RAJU, P.,
AND CHIDAMBARAM, V. Finding Crash-Consistency Bugs
with Bounded Black-Box Crash Testing. In Proceedings of the
13th USENIX Conference on Operating Systems Design and
Implementation (OSDI’18) (Oct. 2018).

[70] NUGET. WindowsAzure.Storage NuGet. https://www.
nuget.org/packages/WindowsAzure.Storage, 2022.

[71] ORLEANS-7738. Popping up queue messages may cause
data loss and unexpected NullReferenceException. https:
//github.com/dotnet/orleans/issues/7738, 2022.

[72] ORLEANS-7790. Data was added repeatedly to the queue
unexpectedly without any warning. https://github.com/
dotnet/orleans/issues/7790, 2022.

[73] PILLAI, T. S., CHIDAMBARAM, V., KISWANY, S. A.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications. In Proceedings of
the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14) (Oct. 2014).

[74] RAVINDRANATH, L., NATH, S., PADHYE, J., AND BALAKR-
ISHNAN, H. Automatic and Scalable Fault Detection for Mo-
bile Applications. In Proceedings of the 12th International
Conference on Mobile Systems, Applications, and Services
(MobiSys’14) (June 2014).

https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://docs.oracle.com/javase/7/docs/api/java/lang/InheritableThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/InheritableThreadLocal.html
https://devblogs.microsoft.com/azure-sdk/unit-testing-and-mocking/
https://devblogs.microsoft.com/azure-sdk/unit-testing-and-mocking/
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.remoting.messaging.callcontext
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.remoting.messaging.callcontext
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/rest/api/storageservices/table-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/table-service-error-codes
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://www.nuget.org/packages/WindowsAzure.Storage
https://www.nuget.org/packages/WindowsAzure.Storage
https://github.com/dotnet/orleans/issues/7738
https://github.com/dotnet/orleans/issues/7738
https://github.com/dotnet/orleans/issues/7790
https://github.com/dotnet/orleans/issues/7790

[75] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the Unex-
pected in Distributed Systems. In Proceedings of the 3rd
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’06) (May 2006).

[76] RFC 9110 HTTP SEMANTICS. Idempotent Meth-
ods. https://www.rfc-editor.org/rfc/rfc9110.html#
name-idempotent-methods, 2022.

[77] RUBIO-GONZÁLEZ, C., GUNAWI, H. S., LIBLIT, B., ARPACI-
DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C. Error Prop-
agation Analysis for File Systems. In Proceedings of the ACM
SIGPLAN 2009 Conference on Programming Language De-
sign and Implementation (PLDI’09) (June 2009).

[78] STACKOVERFLOW-39661635. Retry on 408 Time-
out from Azure Table Storage service. https:
//stackoverflow.com/questions//retry-on-408-
timeout-from-azure-table-storage-service, 2016.

[79] SUN, J., SU, T., LI, J., DONG, Z., PU, G., XIE, T., AND SU,
Z. Understanding and Finding System Setting-Related Defects
in Android Apps. In Proceedings of the 2021 ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA’21) (July 2021).

[80] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAPPAN,
R., GASCH, M., SURESH, L., AND XU, T. Automatic Relia-
bility Testing for Cluster Management Controllers. In Proceed-
ings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22) (July 2022).

[81] TAN, C., JIN, Z., GUO, C., ZHANG, T., WU, H., DENG, K.,
BI, D., AND XIANG, D. NetBouncer: Active Device and Link
Failure Localization in Data Center Networks. In Proceedings
of the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19) (Feb. 2019).

[82] WEIMER, W., AND NECULA, G. C. Finding and Preventing
Run-Time Error Handling Mistakes. In Proceedings of the

19th Annual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’04)
(Oct. 2004).

[83] YOO, S., AND HARMAN, M. Regression Testing Minimisa-
tion, Selection and Prioritization: A Survey. Software Testing,
Verification, and Reliability 22, 2 (Mar. 2012), 67–120.

[84] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G. R.,
ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple
Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed Data-Intensive Systems. In
Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[85] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error Diagnosis by Connecting
Clues from Run-Time Logs. In Proceedings of the 15th Inter-
national Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS-XV) (Mar. 2010).

[86] YUAN, D., PARK, S., HUANG, P., LIU, Y., LEE, M. M.,
TANG, X., ZHOU, Y., AND SAVAGE, S. Be Conservative:
Enhancing Failure Diagnosis with Proactive Logging. In Pro-
ceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’12) (Oct. 2012).

[87] ZHANG, P., AND ELBAUM, S. Amplifying Tests to Validate
Exception Handling Code. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE’12) (June
2012).

[88] ZHANG, Q., YU, G., GUO, C., DANG, Y., SWANSON, N.,
YANG, X., YAO, R., , CHINTALAPATI, M., KRISHNAMURTHY,
A., AND ANDERSON, T. Deepview: Virtual Disk Failure
Diagnosis and Pattern Detection for Azure. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18) (Apr. 2018).

https://www.rfc-editor.org/rfc/rfc9110.html#name-idempotent-methods
https://www.rfc-editor.org/rfc/rfc9110.html#name-idempotent-methods
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service

	Introduction
	Background and Motivation
	Errors in Cloud-backed Applications
	Emerging Reliability Challenges
	A lack of standards and consistencies
	Rarity and large space of faults

	Our Goal

	Bug Taxonomy
	No Error Handling
	Throwing Unrelated Exceptions
	Silent Semantic Violations
	State Divergence

	Rainmaker
	Overview
	Fault Injection Policy
	What faults to inject (for a REST API call)?
	Which REST API calls to inject faults?

	Test Oracles
	Exception Oracle
	Assertion Violation Oracle

	Diagnosis Support
	Implementation

	Evaluation
	Finding New Bugs
	False Positives
	Running Time with Coverage

	Discussion and Limitation
	Related Work
	Concluding Remarks

