
Automatic Root Cause Analysis via Large Language

Models for Cloud Incidents

Yinfang Chen⋄§, Huaibing Xie⋄¶, Minghua Ma△∗, Yu Kang∗, Xin Gao∗, Liu Shi∗, Yunjie Cao∗
Xuedong Gao∗, Hao Fan∗, Ming Wen†, Jun Zeng‡, Supriyo Ghosh∗, Xuchao Zhang∗
Chaoyun Zhang∗, Qingwei Lin∗, Saravan Rajmohan∗, Dongmei Zhang∗, Tianyin Xu§

Microsoft∗, University of Illinois at Urbana-Champaign§, Peking University¶
Huazhong University of Science and Technology†, National University of Singapore‡

Abstract

Ensuring the reliability and availability of cloud services
necessitates efficient root cause analysis (RCA) for cloud
incidents. Traditional RCA methods, which rely on man-
ual investigations of data sources such as logs and traces,
are often laborious, error-prone, and challenging for on-call
engineers. In this paper, we introduce RCACopilot, an in-
novative on-call system empowered by the large language
model for automating RCA of cloud incidents. RCACopi-
lot matches incoming incidents to corresponding incident
handlers based on their alert types, aggregates the critical
runtime diagnostic information, predicts the incident’s root
cause category, and provides an explanatory narrative. We
evaluate RCACopilot using a real-world dataset consisting
of a year’s worth of incidents fromMicrosoft. Our evaluation
demonstrates that RCACopilot achieves RCA accuracy up
to 0.766. Furthermore, the diagnostic information collection
component of RCACopilot has been successfully in use at
Microsoft for over four years.

CCS Concepts: • Computer systems organization →
Cloud computing; • Software and its engineering →
Maintaining software.

Keywords: Root Cause Analysis, Large Language Models,
Cloud Systems

⋄ This research was primarily conducted during an internship at Microsoft
Research Asia.
△ Minghua Ma is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629553

1 Introduction

Cloud computing serves as an indispensable infrastructure
for numerous applications and services upon which peo-
ple rely daily. As the adoption of cloud services continues
to grow, ensuring their reliability, availability, and security
becomes increasingly vital [12, 17, 24, 32, 36, 43, 44, 47]. How-
ever, the complexity of cloud systems makes them vulnerable
to a variety of incidents that could pose significant challenges
to these crucial properties [54]. A typical incident life-cycle
consists of four stages: (1) Detection [37, 51, 52]: When an
anomalous system behavior is observed, an alert is raised by
monitors or users of the service (internal engineers or exter-
nal customers). (2) Triaging [4, 8, 9]: After the detection, the
incident is assigned to the appropriate engineering team af-
ter an initial assessment. (3) Diagnosis [34]: Assigned on-call
engineers (OCEs) inspect different aspects of the incident
and have several rounds of back-and-forth communication to
identify the root cause. (4) Mitigation [1, 20]: Several actions
are taken by OCEs to mitigate the incident and to restore
service health.

Root cause analysis (RCA) is pivotal in promptly and effec-
tively addressing these incidents. By accurately diagnosing
the underlying problem and preventing its recurrence, RCA
not only restores service availability swiftly but also fortifies
the overall reliability of cloud services. However, identifying
the root causes of these incidents often represents a daunting
and time-consuming task that requires significant human
expertise and intervention [36].
Traditional approaches to cloud incident RCA typically

involve the manual collection and analysis of various types
of data, such as logs [18, 19, 27, 31, 56], metrics [14, 38, 49],
traces [53, 61], and incident tickets [20, 42]. This manual
process is not only laborious and error-prone, but can also
be challenging due to varying levels of available informa-
tion - what we term as the “information spectrum”. The
“information spectrum” describes a continuum of informa-
tion availability, ranging from situations with too little in-
formation to those inundated with an excess. At either end
of this spectrum, RCA can become particularly challenging.
The relevant information for RCA might be buried within
the voluminous data, leading to an information overload for
OCEs. OCEs may find it challenging to quickly pinpoint the

https://doi.org/10.1145/3627703.3629553

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

relevant information amidst the sea of data, hindering effi-
cient incident resolution. Conversely, OCEs also encounter
situations where they lack the necessary information to un-
derstand and address the root causes of incidents accurately.
Beyond these challenges, the collected data itself is often
noisy, incomplete and inconsistent, further complicating the
RCA process.

Specifically, the engineering team documents the frequent
troubleshooting steps in the form of troubleshooting guides
(TSGs) to facilitate the handling of future incidents. However,
the volume of TSGs is overwhelming for OCEs, making the
search for the most relevant guide a time-consuming task
that might cause system downtime. Moreover, TSGs struggle
to keep pace with the ever-evolving nature of cloud systems,
thus often falling short when new incident types emerge.
Even when a relevant TSG is located, it may not cover all
the intricacies of the specific incident. This could be due to
variations in system configurations, the presence of multiple
interacting root causes, or previously unknown issues.
At the heart of RCA lies the fundamental challenge of

efficiently collecting and interpreting comprehensive, incident-
specific data within a limited time frame. OCEs must quickly
discern the relevance of various data types to the incident at
hand and interpret them correctly. However, the complex-
ity and sheer volume of data generated by cloud systems
often impede rapid decision-making. Furthermore, the ex-
pertise required to analyze various data types, along with
the diverse range of possible incident causes, exacerbates
the difficulty of the task. As a result, OCEs may spend an
inordinate amount of time analyzing data and formulating
hypotheses, detracting from time that could be better spent
resolving the incident and restoring system functionality.
Data-driven and Artificial Intelligence (AI) techniques

have been leveraged for automating the incident manage-
ment [9, 10]. While there are existing techniques that recom-
mends relevant TSGs [20] and automates the workflows [42]
of TSGs, their utility is limited by the inherent challenges
associated with TSGs. Despite these automated processes,
OCEs still find themselves investing significant manual effort
in sifting through the vast amounts of information, interpret-
ing the data, and identifying the root causes of incidents.
The recent advent and success of large language models

(LLMs) in performing complex tasks [21, 28, 46], suggests
a promising avenue for enhancing RCA. Specifically, LLMs
can be used to parse through high-volume data, discern rele-
vant information, and produce succinct, insightful outputs.
This significantly alleviates the burden on OCEs to manually
sift through vast amounts of data, helping them focus on
resolving the incident more quickly and effectively. Addition-
ally, LLMs can adapt to new and evolving types of incidents,
learning from previous data to improve future predictions.
While LLMs can process and generate text efficiently, they
lack intrinsic domain-specific knowledge, especially in spe-
cialized areas such as cloud incident management. This lack

of understanding of specific contexts, such as cloud incidents,
can limit their accuracy in predicting incident root causes
and generating appropriate explanations.
Recently, Ahmed et. al. [1] proposed to finetune a LLMs

with domain-specific datasets for generating root causes
of an incident just by leveraging the title and summary in-
formation available at the time of incident creation. While
they have demonstrated promises of LLMs in incident root
causing, finetuning has several limitations: (1) As accurate
RCA requires various sources of complex unstructured or
semi-structured data (e.g., logs, telemetry, traces, and natural
language description), just using a generic title and summary
might miss useful signals to reach conclusive diagnosis de-
tails; (2) finetuning is costly and may require a huge volume
of training samples; (3) it is challenging to continuously up-
date a finetuned GPT model with evolving nature and scope
of incidents; therefore such models are prone to generate
more hallucinated results over time.
In this paper, we introduce RCACopilot, a novel on-call

system presenting an automatic end-to-end approach to
cloud incident RCA. RCACopilot operates as an on-call
system, empowering OCEs to construct ‘incident handlers’ -
automated workflows tailored to each alert type, made up of
reusable actions reflecting OCEs’ expertise. These predefined
handlers automatically streamline the collection of incident-
specific diagnostic information from multiple sources, thus
ensuring a more focused and relevant data accumulation
process to avoid issues on either end of the information spec-
trum. Subsequently, the LLM component of RCACopilot
processes this diagnostic data, predicting the category label
of incident root causes and providing corresponding expla-
nations. The combination of incident handlers and the LLM
allows RCACopilot to significantly enhance adaptability
and scalability in incident response. As a result, RCACopi-
lot can effectively handle a diverse types of incidents while
reducing the need for extensive human intervention.

The diagnostic information collection component of RCA-
Copilot has been in use at Microsoft for over four years. In
recent developments, a root cause prediction component was
prototyped and, following a successful preliminary phase,
has been actively deployed by an incident management team
at Microsoft for a period spanning several months.

Contributions. This paper makes three main contributions:

• We propose RCACopilot, an automated end-to-end so-
lution for cloud incident root cause analysis that enables
on-call engineers to construct incident-specific automatic
workflows for efficient data collection frommultiple sources.

• We introduce the integration of a large language model
within RCACopilot that autonomously analyzes the col-
lected diagnostic data to predict incident root cause cate-
gories and generate explanations, demonstrating the po-
tential of the large language model in root cause analysis.

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

• We showcase the real-world applicability of RCACopilot
by presenting its successful adoption within Microsoft.
This illustrates its practical effectiveness in enhancing root
cause analysis efficiency, demonstrating the feasibility and
benefits of our approach in real-world cloud scenarios.

2 Background and Motivation

In this section, we first introduce the concept and importance
of incident root cause analysis. We then present real-world
examples of troubleshooting guides and illustrate their inher-
ent limitations. Lastly, we discuss the potential advantages
of integrating a large language model into the RCA process,
which motivates our work.

2.1 Incident Root Cause Analysis

In the realm of cloud services, an incident refers to any event
that disrupts normal service operations or causes degrada-
tion in the quality of services. When such incidents occur,
root cause analysis is performed to identify the underlying
issue causing the disruption.

RCA in cloud services is a multi-faceted process:

• Data Collection: Gathering incident-related data from var-
ious sources such as logs, metrics, traces, or alerts is the
first step in RCA.

• Data Analysis: The collected data is then analyzed to iden-
tify patterns, anomalies, or correlations that can possibly
provide clues about the root cause of the incident.

• Hypothesis Verification: Based on the data analysis, hy-
potheses about the possible root cause are formulated and
then verified by OCEs.

Given the complexity and dynamism nature of cloud sys-
tems, along with the immense volume of data involved, con-
ducting RCA is a challenging task, which requires substantial
expertise and time. Take the scale of Microsoft’s email ser-
vice as an example, which delivers over 150 billion messages
daily. Ensuring the smooth operation of such a large-scale
service demands an efficient and effective RCA approach.
This is pivotal in maintaining a reliable and high-performing
communication infrastructure, particularly for organizations
that rely heavily on Microsoft’s email servers.

2.2 The Opportunities and Challenges of

Multi-Source Data in Incident Management

Managing incidents in the complex ecosystem of cloud ser-
vices necessitates a comprehensive understanding of system
states. This comprehension often stems from the consolida-
tion of multi-source data, which includes traces, logs, and
metrics. Traces represent tree-structured data detailing the
flow of user requests, logs are semi-structured text recording
hardware and software events, while metrics monitor service
status or user-perceived metrics, forming time series data.
While these individual data sources yield valuable insights,

Troubleshooting Guide for Poisoned Messages

1. Go to the Poisoned Message Dashboard. This page
gives a real-time, high-level view of the Poison Mes-
sage feature. The charts should indicate whether the
problem has resolved itself or is ongoing, as well as
some sense of where it is occurring . . .
2. The Dashboard newly implements an Exception Ta-
ble that has poisoned messages within a time frame.
In most cases, whatever exception is causing an alert
will rise to the top of the table . . .
3. You may also check the Poison Message Logs . . .
. . .

Figure 1. A TSG for a poisoned message incident.

capitalizing on their potential has challenges. Traditional ap-
proaches such as TSGs, though useful, may fail to exploit the
full wealth of multi-source data due to inherent limitations.

2.2.1 Opportunities of Multi-Source Data. Different
data sources provide different perspectives on the system
state. For instance, logs can offer detailed event sequences,
metrics can reflect system performance over time, and traces
can reveal the propagation of requests across services. Inte-
grating these data sources can provide amore comprehensive
view of the system, enabling more accurate and efficient in-
cident diagnosis and resolution. Furthermore, multi-source
data can facilitate correlation and causality analysis, which is
crucial for root cause analysis. By analyzing the relationships
between different data sources, we can identify patterns and
anomalies that may indicate the root cause of an incident.

2.2.2 Challenges of Multi-Source Data. Despite its po-
tential, effectively leveraging multi-source data in incident
management is challenging. The sheer volume and com-
plexity of data from various sources can be overwhelming,
making it difficult to extract meaningful insights. Worse still,
different data sources may provide inconsistent or conflict-
ing information. Moreover, real-world data is often noisy,
which can complicate analysis and lead to false conclusions.

2.2.3 Limitations of TSGs. Traditional TSGs represent
an early attempt to leverage multi-source data for incident
management. They guide OCEs to gather and analyze data
from various sources to diagnose and resolve incidents. How-
ever, TSGs face several inherent limitations:

• Manual data integration: TSGs typically require OCEs to
gather data from different sources manually. This process
can be time-consuming and error-prone. Notwithstanding
the existence of diverse troubleshooting guides and TSG
recommendation techniques [20], dependence on TSGs

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

still remains a significant stress and burnout for OCEs due
to the inherent limitations of the manual process.

• Outdated information: TSGs, as static documents, often
struggle to stay up-to-datewith the evolving system changes
and new insights about incident root causes. This lag can
lead OCEs to follow outdated or suboptimal troubleshoot-
ing steps. For example, a new feature (“Exception Table”)
to check Poison Message exceptions, mentioned as the
second step in Figure 1, was not immediately incorporated
into the TSG upon its release, causing potential inefficien-
cies in incident resolution.

• Insufficient details and coverage: High-level instructions of-
ten appear in TSGs, lacking in detail and specific guidance,
which forces OCEs into additional research and prolongs
incident mitigation. In the TSG example from Figure 1,
the third step instructs to check the Poison Message Logs,
leaving out crucial details and causing confusion for OCEs
unfamiliar with this incident type. Additionally, TSGs may
overlook common checks, e.g., disk space checks, leading
to partial or inadequate incident resolutions.

2.3 The Promise of Large Language Models for

Incident Management

The rapid advancements in natural language processing and
machine learning have led to the development of powerful
LLMs, which are reported to be effective at various down-
stream tasks with zero-shot and few-shot learning [5, 11, 28].
These models have shown exceptional performance in trans-
lation, summarization, and question-answering. Leveraging
their potential for incident management in cloud comput-
ing systems could revolutionize the way OCEs identify and
resolve incidents. By automating the interpretation aspect
of incident management, LLMs can help alleviate the stress
and cognitive load associated with complex on-call tasks for
OCEs, which enables OCEs to focus more on higher-level
jobs and decision-making.

2.4 Our Motivation

The motivation for our work is rooted in the challenges
faced when using manual TSGs to diagnose incidents and
identify the underlying root causes. Our goal is to develop an
automated diagnostic process that harnesses the capabilities
of LLMs to address various cloud incidents more effectively.

Different from previous work [42], which employs AI tech-
niques to generate automated workflow from existing TSGs,
our goal is to enable experienced OCEs to construct an auto-
mated pipeline for incident diagnosis. This approach allows
OCEs to be directly assisted in identifying the root cause
without the need to investigate intermediate diagnostic in-
formation, though they still have the option to do so.
We envision a future in which root cause analysis is pre-

dominantly automated, requiring minimal manual verifica-
tion only when necessary. Our approach seeks to provide
OCEs with timely, relevant, and accurate information for

specific incidents, leading to more efficient RCA. By leverag-
ing LLMs to predict root cause category, our research aims
to alleviate the stress and cognitive load associated with in-
cident management, ultimately enhancing the efficiency and
effectiveness in addressing incidents.

3 Insights from Incidents

We conducted a comprehensive study of the one-year in-
cidents from an email service from Microsoft, employing
rigorous qualitative analysis methods. Specifically, each inci-
dent was carefully reviewed and categorized based on the
characteristics of the problem, the source of the issue, and
the impact on the system by our experienced OCEs. We paid
particular attention to the root causes of the incidents, the
effectiveness of the response, and the recurrence of similar
issues. While our insights were indeed intuitively derived,
they were firmly grounded in empirical data and analysis.
Our study not only yielded valuable insights into incident
patterns and challenges but also informed the development
and refinement of our approach.

Insight 1: determining the root cause based on a single
data source can be challenging. As an illustration, con-
sider Incident 2 in Table 1, where a single server failed to
perform DNS resolution for incoming packets due to the
exhaustion of UDP hub ports on a front door machine. This
example highlights the difficulties in relying solely on a sin-
gle source (monitor alert) to diagnose complex issues.

When a mailbox server sends mail to external email recip-
ients, it uses specific front-door servers (proxies). However,
each front-door server has a limited number of available
SMTP outbound proxy connections. If a mailbox server’s
proxy connection request fails, it will be unable to send mes-
sages to external recipients. In this incident, the monitor first
raises an alert indicating detected failures when connecting
to the front door server. However, this alert only signifies a
connection issue between the mail server and the front door
server, without even suggesting a DNS resolution problem.
Consequently, the root cause remains unclear.

0 20 40 60 80 100 120
Time Interval (days)

0.00

0.02

0.04

0.06

P
ro

ba
bi

lit
y

Figure 2. Recurring incidents proportion vs. time interval.

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

Table 1. Examples of cloud incidents in different root cause categories.

No. Sev. Scope Category Occur. Symptom Cause

1 1 Forest AuthCertIssue 3 Tokens for requesting ser-
vices were not able to be cre-
ated. Several services reported
users experiencing outages.

A previous invalid certificate
overrided the existing one due
to misconfiguration.

2 2 Machine HubPortExhaustion 27 A single server failed to do
DNS resolution for the incom-
ing packages.

The UDP hub ports on the ma-
chine had been run out.

3 2 Forest DeliveryHang 6 Mailbox delivery service hang
for a long time.

Number of messages queued
for mailbox delivery exceeded
the limit.

4 2 Forest CodeRegression 15 An SMTP authentication com-
ponent’s availability dropped.

Bug in the code.

5 2 Forest CertForBogusTenants 11 The number of concurrent
server connections exceeded
a limit.

Spammers abused the system
by creating a lot of bogus ten-
ants with connectors using a
certificate domain.

6 1 Forest MaliciousAttack 2 Forest-wide processes crashed
over threshold.

Active exploit was launched
in remote PowerShell by seri-
alizing malicious binary blob.

7 2 Forest UseRouteResolution 9 Poisoned messages sent to the
forest made the system un-
healthy.

A configuration service was
unable to update the settings
leading to the crash.

8 2 Forest FullDisk 2 Many processes crashed and
threw IO exceptions.

A specific disk was full.

9 2 Forest InvalidJournaling 11 Messages stuck in submission
queue for a long time.

The customer set an invalid
value for the Transport con-
fig and caused TenantSet-
tingsNotFoundException.

10 3 Forest DispatcherTaskCancelled 22 Normal priority messages
across a forest had been
queued in submission queues
for a long time.

Network problem caused the
authentication service to be
unreachable.

Insight 2: incidents stemming from similar or iden-
tical root causes often recur within a short period. We
found that most recurring incidents (93.80%) tend to reappear
within a brief span of 20 days, as shown in Figure 2. For in-
stance, consider the category of Incident 9 from Table 1. This
type of incident, triggered by invalid customer configuration,
led to an accumulation of unprocessedmessages in the queue,
thereby significantly undermining its availability. Intrigu-
ingly, incidents of this category recurred 11 times in a span
of merely 15 days. Likewise, the DispatcherTaskCancelled
incidents (No. 10 in Table 1) and the DeliveryHang incidents
(No. 3) reappeared 22 times and 6 times within a week and a
single month, respectively. These can be attributed to several
factors. Unresolved root causes from the initial response may
lead to the same issue re-emerging, especially if the prob-
lem is complex or not fully understood. Secondly, systemic
vulnerabilities, if not addressed, can be repeatedly exploited,
causing similar incidents. Thirdly, external dependencies,
such as reliance on a service that frequently experiences

outages, can also lead to recurring incidents. These patterns
suggest that by leveraging insights from previous incidents,
we could swiftly identify the root cause of new occurrences
with the same root cause.

1 2 3 4 5 6 7 8 9 10+
Category Occurrence

0

30

60

90

120

150

C
ou

nt

Figure 3. Distribution of incident category frequency.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

Insight 3: incidents with new root causes occur fre-
quently and pose a greater challenge to analyze. TSGs
can help OCEs diagnose issues by providing clear investi-
gation guidance. However, when incidents arise from new,
previously unencountered root causes, OCEs face a set of
challenges. For such incidents, no TSG exists, and OCEs may
struggle to identify the underlying issues. For instance, In-
cident 1 is a high-severity (severity 1) incident caused by
misconfiguration, which blocked the authentication token
generation to lead to severe outages. Similarly, Incident 6 is a
malicious attack caused by an attacker launching an exploit
with a malicious blob. This type of attack had never been
encountered before, leaving OCEs without an existing TSG
to reference. Lower severity level (severity 2) incidents, such
as Incident 5, are also susceptible to this challenge when the
spammer first abuses the system. As Figure 3 shows, inci-
dents with a new root cause category account for 24.96%
(163 among 653) of all incidents. If OCEs spend their time
searching for nonexistent TSGs, the incident’s impact could
escalate further. Recognizing this challenge, it is necessary
to propose a new approach that can effectively infer, catego-
rize and explain the root causes for such unseen incidents,
thereby reducing the time OCEs take to identify and address
these unique incidents.

4 RCACopilot

RCACopilot has two stages: the diagnostic information
collection stage and the root cause prediction stage as shown
in Figure 4.
Diagnostic information collection stage: This is the

initial stage, where the incident is parsed and matched to
the pre-defined incident handler. Each incident handler is
tailored to a specific alert type. Upon matching the incident
with the appropriate handler, RCACopilot proceeds to col-
lect relevant diagnostic data from a variety of sources.

Root cause prediction stage: Once the diagnostic infor-
mation is collected, RCACopilot transitions into the root
cause prediction stage. In this phase, RCACopilot applies
its predictive module to determine the likely root cause cat-
egory of the incident. This prediction is not a mere cate-
gorization, but it is also supplemented with an explanation
detailing how RCACopilot arrived at the given prediction.
Subsequently, the predicted category label is presented to
experienced OCEs for review.

4.1 Diagnostic Information Collection Stage

Driven by Insight-1 in Section 3, RCACopilot aims to collect
multi-source data for RCA. Specifically, for each alert type,
an incident handler is constructed, comprising a series of
actions to collect diagnostic information. Alert types are
used to categorize alerts based on specificmonitors. Incidents
sharing the same alert type exhibit similar symptoms, though
they may stem from different root causes.

The RCACopilot incident handler is a workflow that
consists of a series of actions. Each action is a function that
can be executed to collect specific diagnostic information
from a target data source. OCEs can build and modify these
handlers based on their expertise. The handler includes three
distinct actions: scope switching action, query action, and
mitigation action, which will be explained in Section 4.1.2.
Each action generates an output, guiding the control flow
of the incident handler. We use a RCACopilot handler that
diagnoses Incident 7 in Table 1 as an example to illustrate
the handler usage.

4.1.1 Incident handler. The decision-making process that
OCEs employ when handling an incident resembles a deci-
sion tree’s control flow. The root node in the incident handler
is the incident alert type, which is gathered from the sys-
tem monitor. We distilled OCE operations into three actions
when constructing the incident handler. As OCE operations
can be similar to different incident types (e.g., conducting
a common disk check or query to a database), we designed
RCACopilot handler actions to be reusable across all han-
dlers. We also maintain the versions of the handlers in the
database, which can be used to track their historical changes.
RCACopilot’s incident handlers are constructed manu-

ally first and can be updated and modified dynamically by
OCEs, allowing them to stay abreast with the most recent
system changes and newly discovered root causes. For in-
stance, when a new metric is introduced into the system,
OCEs only need to construct a new action to collect the rele-
vant data and incorporate it into the corresponding incident
handler, which can ensure timely adaptation.

4.1.2 Handler action. RCACopilot leverages the syn-
ergy ofmulti-source data. The system uses predefined reusable
actions in the incident handler to automatically collect rel-
evant diagnostic information from diverse sources. The au-
tomated integration of data not only saves time but also
reduces the likelihood of human error. It provides a more
comprehensive view of the system state, facilitating efficient
and accurate incident resolution. This significantly lightens
the workload of OCEs, reducing stress and burnout, and en-
hancing the effectiveness of the incident resolution process.
The action in the handler could be one of the following:

Scope switching action: This action facilitates precision
in RCA by allowing adjustments to the data collection scope
based on the specific needs of each incident. For instance, as
depicted in Figure 5, if an alert originates at the ‘forest’ level,
signifying an issue within a specific forest, and the problem
type is identified as ‘Busy Hub’, the scope switching action
can adjust the scope to the ‘machine’ level. This modification
allows for a more fine-grained investigation, specifically
assessing if a singular hub server is overly taxed.
The implementation of this action ensures that we effi-

ciently navigate the information spectrum. When the in-
vestigation requires a more targeted approach, this action

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

DB
Store

diagnostic
info.

Load
handlers

Handler
Matching

Incident
Parsing

Info.
Collection

OCEsIncoming Incident
Title
OwingTenant
OwningTeam

ID

Incident
Summarization

Root cause
prediction

Incident 1
Incident 2

Incident K

Root cause category
and explanation

Collection Stage
Neighbor

Search

LLM

Diagnostic information

Summarized
diagnostic info.

LLM
Embedding
vector DB

Embedding

Find K Nearest

Prediction Stage

Figure 4. RCACopilot architecture.

can narrow the data collection scope. Conversely, if a more
holistic view is necessary, it can widen the scope, say from a
single machine to an entire forest. This flexibility contributes
to a more balanced and effective diagnostic data collection.
Query action: Query action can query data from differ-

ent sources and output the query result as a key-value pair
table. This type of action can also be hooked to executing a
specific script with pre-defined parameters. Usually, scripts
are internal automatic investigation tools for a service, and
only the service team has access to the tools.

For instance, in Figure 5, the “Known issue?” action node
queries the database to see whether the current incident is
a known one or not based on its alert messages. If it is a
known issue, execution flow will enter the “True” branch to
give mitigation actions directly. Otherwise, a query script
that can aggregate threads with the same stack traces will
be executed. It will obtain an instantaneous list of the stacks
on all the managed threads in the target process and then
group common stacks together in order to identify potential
deadlocks/blocking code paths in the process.

The query action can also output an enum value to decide
the next action node to execute, e.g., after getting the top
error message on the exception stack traces, i.e., "Get top
error msg" node, the next action node to be run depends on
the exception type. Based on the error messages, a specific
team will be reported and engaged, as shown in Figure 5.
Mitigation action: This action refers to the strategic

steps suggested to alleviate an incident, such as “restart ser-
vice” or “engage other teams”, as depicted in Figure 5. It’s
important to note that handlers do not always provide exact
mitigation strategies for every incident, due to handlers’ pre-
defined nature, which may not cover all possible situations.
For instance, Incident 4 in Table 1, categorized under code
regression, presents a case where identification and rectifica-
tion of such code issues can be challenging. In cases where
the incident handler is uncertain, it will offer intermediate
diagnostic information to the OCEs without mitigation.

4.1.3 Multi-source diagnostic information. RCACopi-
lot’s diagnostic information collection stage serves as a
valuable tool for OCEs by aggregating data from a myriad

of sources. OCEs only need to customize the action in the
handler to acquire the diagnostic information from a target
source. For instance, as illustrated in Figure 6, RCACopilot
can assimilate diverse data such as error logs, exception stack
traces, and socket metrics related to a specific incident. The
error log and exception stack trace alone does not provide
sufficient insight to identify the root cause of the incident.
However, when supplemented with the socket metrics, a
more comprehensive picture emerges. In this example, it is
clear that the UDP socket is exhausted, which is the root
cause.
In the case of new incidents, RCACopilot can perform

a range of common checks, such as evaluating the provi-
sioning status or analyzing thread stacks. This assists OCEs
in gaining a holistic understanding of the situation. Note
that the information collected is pre-defined in the actions
of the RCACopilot handler, ensuring that only relevant
data is gathered, thus avoiding overwhelming information
that is unnecessary. By providing this comprehensive diag-
nostic information, RCACopilot empowers OCE teams to
troubleshoot issues efficiently. They can use the gathered in-
formation as guidance to address incidents more effectively.

4.2 LLMs for Incident Explanation

Upon thorough investigation, each incident within our ser-
vice is manually assigned a root cause category by our sea-
soned OCEs. OCEs will use the categories to classify the
historical incidents and guide the new incoming incidents’
RCA. However, reasoning the incidents and inferring their
categories are time-consuming and potentially overwhelm-
ing for OCEs, who have a tight time budget. Given this, we
have identified the categorization of incident root causes as
our primary downstream task.
Recently, LLMs have demonstrated remarkable capabili-

ties in understanding the context of downstream tasks and
generating relevant information from demonstrations, mak-
ing them a possible choice for incident RCA. However, rea-
soning the incident root cause is not a simple task, and LLMs
may not be able to achieve the optimal results on long-tail or

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

Determine
Issue Type

Get top Error
Msg

Switch Scope to
Single Server

*recipient mailbox location
information is not available*

Engage other
Teams

*Deliver.Exception:Mailbox
OfflineException.*

Report to a
Specific Team

Analyze Single
Busy ServerBusy

Hub

Others

Known Issue?

Busy Delivery/
Recipient

Mitigation
Actions

True

Get-
ThreadStackGr

ouping.ps1 False

Check Delivery
Health

Delivery is Restarted
Recently?

Restart Service

True
Collect Diagnose

Logs

Default

Default

Default

Figure 5. A RCACopilot handler for too many messages stuck in the delivery queue alert.

DatacenterHubOutboundProxyProbe probe log result from
[MachineID].
Total Probes: 2, Failed Probes: 2
Id Level Created Description
– —– ——- ———–
2 Error 11/21/2022 2:04:20 AM Probe result
2 Error 11/21/2022 1:49:20 AM Probe result

Failed probe error:
Name: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
Count: 2
. . .
Exceptions:
InformativeSocketException: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
at TcpClientFactory.Create(...)
at SimpleSmtpClient.Connect(...)
. . .
Total UDP socket count: 15276
Total UDP socket count by process and processId (top
5 only):
14923: Transport.exe, 203736
15: w3wp.exe, 102296
8: svchost.exe, 4748
7: Microsoft.Transport.Store.Worker.exe, 74060
7: Microsoft.Transport.Store.Worker.exe, 87724

Figure 6. Diagnostic information for hub port exhaustion.

domain-specific tasks without any guidance [6, 22]. Chain-of-
Thoughts (CoT) prompting is a gradient-free technique that
elicits LLMs to generate intermediate reasoning steps that
lead to the final answer. In few-shots CoT prompting, a few
manual demonstrations that are composed of a question and
a reasoning chain that leads to an answer for each of them.
Inspired by the above ideas, diagnostic information provided
by RCACopilot handlers can be used as ingredients for the
reasoning process of the incidents.

4.2.1 Embedding model. Our observation is that the se-
mantics of incidents can be revealed from the context in which
the diagnostic information is described. A common approach
to extracting such contextual semantics involves the use of
embedding models. The objective is to map the diagnostic
information into an embedding space (i.e., numeric vector
space), where the distances between vectors represent the
semantic similarity of incidents. Choosing a computationally
efficient embedding model allows us to preserve accuracy
while handling a large number of incidents.

We employ FastText as our embedding model, which is
efficient, insensitive to text input length, and generates dense
matrices, making it easy to calculate the Euclidean distance
between similar vectors. Furthermore, since our downstream
task is domain-specific to the incident root cause reasoning,
and the incident-related information is internal to our com-
pany, we opt to train a FastText model on our historical inci-
dents rather than using a pre-trained large language model
as our embedding model, which is costly and inefficient. Ad-
ditionally, we provide users with the flexibility to customize
their embedding model if desired.

4.2.2 Nearest neighbor search. Incidents are heteroge-
neous, making it impractical to combine all past incidents’
information for sampling due to the prompt length limita-
tions, even after summarization. To selectively choose past
cases as samples in the prompt, we design a new similarity
formula:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) = | |𝑎 − 𝑏 | |2

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 1
1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) ∗ 𝑒

−𝛼 |𝑇 (𝑎)−𝑇 (𝑏) |

to calculate the similarity between two incidents. It first
computes the Euclidean distance for every pair of incident
vectors. Importantly, it also takes into account the tempo-
ral distance between incidents, reflecting our Insight-2 in
Section 3. Here, 𝑇 (𝑥) stands for the date of incident 𝑥 . This
consideration of temporal distance is crucial as it influences
the relevance of past incidents to the current ones. After
calculating similarities, we select the top 𝐾 incidents from
different categories as demonstrations for the LLM. This

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

approach ensures a diverse and representative set of inci-
dents for effective LLM reasoning. The values of 𝛼 and 𝐾
have been determined as 0.3 and 5, respectively, through
empirical evaluation, as will be presented in Section 5.4.

4.2.3 Diagnostic information summary. LLMs have
shown potential for automatic summarization [40]. Nonethe-
less, the length of the diagnostic information collected from
RCACopilot handlers is often too extensive. As shown in
Figure 6, the diagnostic information of an incident can have
more than 2000 tokens with low readability of the log mes-
sages. The considerable number of tokens in the incident
description can pose challenges for the LLM to effectively
process and may introduce noise. Therefore, feeding the di-
agnostic information of an incident directly into the LLM
to make a prediction could not be an ideal choice, let alone
using the information from multiple sources. In this regard,
we add another layer to leverage the LLM’s ability to summa-
rization to summarize the diagnostic information first before
making the diagnosis reasoning. We construct the prompt in
the way of Figure 7. We ask LLM to summarize the diagnos-
tic information into 120-140 words without outputting any
unrelated information. This summarization process makes
the diagnostic information more concise and informative,
which forms the basis for the later CoT prompting. Figure 8
illustrates a more readable and concise text generated by
RCACopilot, which is a summary (113 tokens) of the previ-
ous diagnostic information example in Figure 6, highlighting
the key details such as the number of UDP ports used and
the process utilizing the most. Specifically, we employ the
tiktoken [41] tokenizer to count text tokens.

“Please summarize the above input. Please note that the
above input is incident diagnostic information. The sum-
mary results should be about 120 words, no more than
140 words, and should cover important information as
much as possible. Just return the summary without any
additional output.”

Figure 7. Prompt to summarize diagnostic information.

4.2.4 Prediction prompt construction. CoT prompting
is a gradient-free technique that guides LLMs to produce
intermediate reasoning steps leading to the final answer. In
few-shot CoT prompting, several demonstrations include
a question and a reasoning chain that directs the answer.
By drawing inspiration from automatically constructing the
prompt to form the reasoning chains [60], we can view the
summarized diagnostic information and the labeled root
cause categories as questions and reasoning, so finding the
nearest incident neighbor is the automatic reasoning chain
construction, aligning with the CoT prompting context well.
Note that we use the original incident information to do the

“The DatacenterHubOutboundProxyProbe has failed
twice on the backend machine, with both failures due
to a WinSock error 11001 indicating that the host is un-
known. This error was encountered while attempting
to connect to the host. The error is associated with the
EOP service and has not been notified yet. The failure
context suggests the same issue. The total UDP socket
count is 15276, with themajority being used by the
Transport.exe process. The issue seems to be related to
the SMTP connection and requires further investigation.”

Figure 8. The summarized diagnostic information.

embedding and nearest neighbor search, and use the corre-
sponding summarized information as part of demonstrations
in the prompt. We construct the prompt like Figure 9 to ask
the LLM to choose the most likely incident that has the same
root cause as the current incident, and also we explicitly
push the LLM to reason by using “give your explanation”
indications in the prompt.

Context: The following description shows the error
log information of an incident. Please select the
incident information that is most likely to have the
same root cause and give your explanation (just
give one answer). If not, please select the first item
“Unseen incident”.
Input: The DatacenterHubOutboundProxyProbe
probe result from [BackEndMachine] is a failure ...
Options:

A: Unseen incident.
B: The DatacenterHubOutboundProxyProbe has

failed twice ... category: HubPortExhaustion.
C: There are 62 managed threads in process

TransportDelivery ... category: AuthCertIssue.

Figure 9. The prompt to predict incident category.

4.3 Implementation

We have developed and deployed RCACopilot using a com-
bined total of 58,286 lines of code, consisting of 56,129 lines
of C# and 2,157 lines of Python.

To facilitate the building of the RCACopilot incident han-
dler, we have implemented RCACopilot’s handler construc-
tion as a web application as shown in Figure 10. To support
a new type of alert in RCACopilot, OCEs only need to add
a new handler in the handler construction GUI according to
her expertise. After the new handler has been constructed,
it will be stored in the database, and OCEs can modify it by
creating new action nodes or deleting old nodes.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

Figure 10. Web-based user interface of RCACopilot for
handler construction.

5 Evaluation

We aim to answer the following questions in our evaluation:

(1) How effective and efficient is RCACopilot as an on-call
system when predicting root cause categories and as-
sisting OCEs? RCACopilot achieves 0.766 and 0.533 for
Micro-F1 and Macro-F1 separately when predicting the
root cause category of cloud incidents, outperforming
all our baselines with a low running overhead (4.205 sec-
onds). RCACopilot is also able to generate new root
cause category labels for unseen incidents with explana-
tions.

(2) How do different components of RCACopilot facilitate
its diagnosis and prediction? RCACopilot has proven
that the diagnostic information collection component,
GPT summarization, and chain-of-thoughts prompting
all contribute to RCACopilot’s prediction effectiveness.

(3) Is RCACopilot suitable for deployment in real produc-
tion services, and are RCACopilot’s results trustworthy?
RCACopilot’s diagnostic information collection mod-
ule has been deployed across 30 teams within Microsoft
for over four years. To evaluate the trustworthiness of
RCACopilot, each experiment was conducted over three
rounds, and RCACopilot can consistently achieve a high
Micro-F1 score of over 0.70 and a Macro-F1 score exceed-
ing 0.50.

All experiments are performed on the server with Intel(R)
Core(TM) i7-9700 CPU @ 3.00GHz, 32.0 GB physical mem-
ory, and Intel UHD Graphics 630. The OS of the server is
Windows 11 Enterprise.

5.1 Target System and Dataset

We evaluate RCACopilot in a global email service system
named Transport within the Microsoft. The Transport team
focuses on developing and maintaining the components re-
sponsible for mail flow, routing, and delivery. This system
interacts with various other services to ensure seamless inte-
gration with a multitude of products and services, including
serviceA, serviceB, and serviceC. Hence, it is representative
of complex, real-world systems that interact with multiple
components. With around 150 billion messages being deliv-
ered daily, Transport operates at a colossal scale and caters
to customers worldwide, adding another layer of diversity
and complexity. The system ensures the secure and effec-
tive transmission of emails between users, utilizing various
protocols such as SMTP, IMAP, and POP3. Given its crucial
role in communications infrastructure, it is essential to have
effective and efficient incident management capabilities.
We collect a one-year dataset of 653 incidents from Mi-

crosoft’s Transport service to investigate RCACopilot’s ef-
ficacy in practice. It is important to note that each of these
incidents represents complex issues in a large-scale, globally
distributed system, and thus each provides valuable insights.
The dataset is manually labeled with root cause categories
by experienced OCEs, which serves as our ground truth. We
divide the incidents into train (75%) and testing sets (25%).
We conduct experiments on two large language models

in RCACopilot, i.e., GPT-3.5-turbo, and GPT-4 (8K tokens),
which are the latest models from OpenAI. We choose GPT-4
as the default model in RCACopilot because it has the best
performance.

5.2 Compared Approaches

We have selected XGBoost, FastText, and fine-tuned LLMs as
our baselines to compare with RCACopilot. After training
or fine-tuning with the training dataset, we directly apply
these approaches to the testing set to do the classification
task. We have also made another two variants, i.e., GPT-4
Prompt and Embed. to evaluate the design of RCACopilot.

• XGBoost provides a parallel tree boosting that has been
commonly used in the networking system diagnosis.

• FastText is a popular lightweight textual embedding ap-
proach, which has been adopted in testbed studies with
fault injections for root cause diagnosis tasks. We directly
apply FastText to our dataset to do the classification.

• Fine-tuneGPT is to fine-tune a pre-trainedGPT-3.5model
with our training dataset and evaluate its performance on
our testing dataset with the temperature parameter set
to 0. It does not use a prompt design (i.e., CoT prompt-
ing) like RCACopilot but directly predicts the category
with the original diagnosis information. Note that GPT-4
is currently not available for fine-tuning.

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

• GPT-4 Prompt is a variant of RCACopilot that directly
predict category with RCACopilot’s diagnosis informa-
tion summaries. Its prompt only contains the incident be-
ing predicted, so there is no historical incident information
as demonstrations.

• GPT-4 Embed. is a variant of RCACopilot that changes
the embedding model from FastText to GPT embedding.

Table 2. Effectiveness of different methods.

Method F1-score Avg. Time (s)

Micro Macro Train. Infer.

FastText [61] 0.076 0.004 10.592 0.524
XGBoost [3] 0.022 0.009 11.581 1.211
Fine-tune GPT [1] 0.103 0.144 3192 4.262

GPT-4 Prompt 0.026 0.004 – 3.251
GPT-4 Embed. 0.257 0.122 1925 3.522

RCACopilot (GPT-3.5) 0.761 0.505 10.562 4.221
RCACopilot (GPT-4) 0.766 0.533 10.562 4.205

5.3 Effectiveness and Efficiency

We evaluate RCACopilot’s effectiveness by predicting the
root cause category of an incident based on the summa-
rized diagnostic information using micro and macro F1-score
metrics. These metrics calculate the harmonic mean of the
precision and recall. The micro F1-score aggregates the per-
formance of all classes, taking into account the contribution
of each sample, while the macro F1-score focuses on the
performance of each individual class. RCACopilot achieves
a micro F1-score of 0.766 and a macro F1-score of 0.533 on
our testing dataset.

As shown in Table 2, RCACopilot outperforms other ap-
proaches, and it tends to incur an acceptable higher runtime
overhead. The performance of baseline approaches is poor,
since multiple root cause categories exhibit a long tail (im-
balanced) distribution, as shown in Figure 3, and traditional
machine learning models (FastText and XGBoost) and fine-
tuning GPT model need a large amount of training data
to produce accurate predictions. Directly employing GPT-4
prompt or GPT-4 embedding approach without our design
lacks domain-specific knowledge for GPT-4 to make deci-
sions. On the contrary, RCACopilot leverages the powerful
LLM to learn the domain-specific knowledge from minimal
cases, so that it can achieve the best performance. Results
indicate that RCACopilot not only provides higher accuracy
but also maintains a reasonable level of efficiency, making it
a suitable choice for incident root cause analysis.
When facing incidents that RCACopilot has never seen

before, RCACopilot is capable of generating a new category
keyword to depict the new incident case. For example, Inci-
dent 8 in Table 1 is a new incident case that RCACopilot

has never encountered. RCACopilot’s prediction compo-
nent is able to predict it as a new category “I/O Bottleneck”.
Although OCEs subsequently categorize it as “DiskFull” in
post-investigation, the fundamental aspects of the problem
identified by RCACopilot align closely with the human-
derived label. The corresponding RCACopilot’s explanation,
illustrating how it arrived at the "I/O Bottleneck" categoriza-
tion, is provided in Figure 11.

The prediction of “I/O Bottleneck” was made based on
the occurrence of System.IO.IOExceptions within cru-
cial functions handling input/output operations, suggest-
ing an issue with data processing. The nested exception
within the DiagnosticsLog module reinforces this notion.
These errors, combined with crashes on different backend
machines, point to a system struggle with handling data
flow.

Figure 11. RCACopilot’s explanation of an incident.

5.4 Comparison Analysis

To understand how different components of RCACopilot
facilitate root cause analysis, we conduct an ablation study
on the different RCACopilot’s components.
Evaluation on diagnostic information. First, we eval-

uate the impact of diagnostic information on effectiveness.
In particular, we compare diagnostic information collected
from the collection stagewith other different incident-related
information, namely, incident alert information and RCA-
Copilot handler action output. AlertInfo includes the alert
type and alert scope. Alert type is a pre-defined anomaly
description from a monitor, which only reflects a symptom
of the incident instead of the root cause, e.g., an exception
type from external monitors. The alert scope is the scope
of the incident, e.g., a single machine. ActionOutput is the
output of a series of executed RCACopilot actions, which
are hashed as key-value pairs. As shown in Table 3, using
diagnostic information alone can outperform others in both
Micro-F1 (0.689) and Macro-F1 scores (0.510). The interesting
observation here is that mixing the diagnostic information

0.0 0.2 0.4 0.6 0.8
alpha

0.50

0.55

0.60

0.65

0.70

0.75

F
1

m
ic

ro

K=3

K=5

K=9

K=12

K=15

(a) F1 micro.

0.0 0.2 0.4 0.6 0.8
alpha

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F
1

m
ac

ro

K=3

K=5

K=9

K=12

K=15

(b) F1 macro.

Figure 12. Effectiveness of using different K and alpha.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

Table 3. Effectiveness of different prompt context for
RCACopilot. ✓sum. stands for the summarized diagnostic

information.

Data Source F1-score

AlertInfo DiagnosticInfo ActionOutput Micro Macro

✓ 0.689 0.510
✓sum.

0.766 0.533

✓ 0.379 0.245
✓ ✓ 0.525 0.511
✓ ✓ 0.431 0.247

✓ ✓ 0.501 0.449
✓ ✓ ✓ 0.440 0.349

with others will not enhance RCACopilot’s predictive capa-
bilities. This demonstrates that an excess of information can
negatively impact the LLM’s prediction performance.
Evaluation on GPT summarization.We evaluate the

role of GPT summarization in enhancing RCACopilot’s ef-
fectiveness. As depicted in Table 3, utilizing summarized
diagnostic information leads to the highest Micro-F1 and
Macro-F1 scores, marking improvements of 0.077 and 0.023,
respectively, over the non-summarized diagnostic informa-
tion. The results demonstrate that the summarization step
effectively condenses the information, allowing for more
efficient and accurate processing of incident data.
Evaluation on few-shots CoT reasoning. We assess

how few-shots CoT reasoning contributes to improving effec-
tiveness. GPT-4 Prompt approach in Table 2, which directly
predicts the category without any sample, only achieves
0.026 and 0.004 for Micro-F1 and Macro-F1 respectively. As
shown in Figure 12a and Figure 12b, we compare the perfor-
mance of RCACopilot with different numbers of samples in
the Chain-of-thoughts reasoning. Our analysis reveals that
the best combination of the number of samples and alpha
values are 5 and 0.3, which achieves the highest F1 scores.
Note that more samples in the CoT reasoning do not always
incur an improvement for RCACopilot, and the value of
the alpha plays an important role in deciding the effective-
ness. When the alpha is appropriate, it allows RCACopilot
to better capture the time relationships between different
incidents, leading to more accurate predictions.

5.5 Deployment Status and Scale

We have successfully deployed RCACopilot’s diagnostic
information collection module across over 30 teams within
Microsoft, where it has been in active use for over four years.
The system is tailored to each team’s specific requirements,
with custom handlers built for each unique setting. Not all
handlers are currently enabled in the production environ-
ment, as some are still under development and rigorous
testing. We select the top 10 teams that utilize the most

RCACopilot incident handlers as shown in Table 4. We ob-
serve that the average running time for each incident ranges
from 15 seconds to 841 seconds. The highest running time
is attributable to the team’s large-scale and complex system
infrastructure. The root cause prediction module has also
been rolled out in the Transport service.
As part of our commitment to continuous improvement

and quality user experience, we have incorporated a feed-
back mechanism in incident notification emails to get user
perspectives from OCEs. According to the collected feed-
back, most OCEs expressed satisfaction with RCACopilot.
Despite the manual effort involved in creating a new incident
handler, OCEs find the process convenient when reusing and
modifying handler actions from the database. RCACopilot
is able to save OCEs a significant amount of time to collect
diagnostic information, triage incident, perform mitigation
and do postmortem analysis.

Table 4. Teams in Microsoft using RCACopilot to
automatically collect diagnostic information.

Team Avg. exec. # Enabled
time (seconds) handler

Team 1 841 213
Team 2 378 204
Team 3 106 88
Team 4 449 42
Team 5 136 41
Team 6 91 34
Team 7 449 32
Team 8 255 32
Team 9 323 31
Team 10 22 18

5.6 Tustworthiness

While GPT has shown great potential and impressive results
in various tasks, it is known to exhibit some instability in
certain complex tasks such as question answering, as noted
by Tan et al. [45]. These instabilities could potentially lead to
variable results. In order to ensure the trustworthiness and
stability of the GPT’s predictive capabilities in RCACopilot,
each experiment has been conducted three rounds. In each
round, RCACopilot was able to maintain a high level of
performance, with the Micro-F1 consistently above 0.70 and
the Macro-F1 remaining above 0.50.

6 Discussion

RCACopilot’s effectiveness depends on the ability of the
LLM. Currently, RCACopilot is only integrated with Ope-
nAI’s GPT models, and we have not yet explored the po-
tential effectiveness of other available LLMs. As such, the
model’s performance may vary depending on the strengths
and weaknesses of the specific LLM employed.

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

We conducted our evaluation of RCACopilot’s predic-
tion module using the incident dataset from Transport. The
dataset was prepared with the assistance of experts in Trans-
port team, given their extensive experience and established
practice of incident labeling. Note that the effectiveness of
RCACopilot is also influenced by the quality of the root
cause category labels written by human. Currently, all root
cause categories are manually labeled by our experienced
OCEs. RCACopilot’s diagnosis information collection has
been deployed in over 30 teams. Consequently, a valuable
future work would be to evaluate RCACopilot across differ-
ent services to gain a more comprehensive understanding of
its generalizability and adaptability.
The handler in RCACopilot is designed to initiate re-

sponses based on alerts from monitors/watchdogs. This en-
sures that when there is a designated incident handler for
a particular alert type, it gets activated with an accuracy
rate of 100%. Nevertheless, it’s crucial to highlight that RCA-
Copilot’s capabilities are constrained in scenarios where
the monitors fail to detect an incident, or when there is an
absence of a corresponding handler for a particular incident.
This, in turn, limits the applicability of RCACopilot.

We conducted three rounds of experiments to evaluate
RCACopilot’s effectiveness. However, the occasional insta-
bility of LLMs can influence their effectiveness, causing vari-
ations across different rounds. Another potential threat to
internal validity lies in the implementation of our approach
and those we compared against. To mitigate this risk, two
authors have carefully checked the code. In particular, our
implementation is based on the matured frameworks.

7 Related Work

Root cause analysis. Root cause analysis in large cloud ser-
vices has become a popular topic of research in the system
and software engineering communities [2, 7, 15, 16, 23, 30,
33, 36, 50, 59]. It aims to identify the root causes of failures
and performance issues based on various data sources, such
as metrics, logs, and traces. Previous studies have proposed
different approaches for root cause analysis using one of
these data sources. For example, some methods rely on met-
rics to extract failure patterns [36, 58] or to construct service
dependency graphs [25, 35]. Others use logs to analyze a sub-
set of log messages [1, 57] or to examine the details within
each log message [27, 56]. Moreover, some techniques utilize
trace to locate the faulty service [26, 29, 48, 54]. Different
from prior work, we build a system that can automatically
integrate metrics, logs, and traces for root cause analysis
with state-of-the-art large language models.
Large Language Models. In recent years, the rise of LLM
has brought new opportunities to the field of software sys-
tems by enabling various tasks such as code generation,
summarization, repair, testing, and root cause analysis [1,
13, 39, 40]. For example, Mastropaolo et al. [40] studied the

ability of fine-tuned T5 in the following tasks: automatic bug
fixing, generation of assert statements, code summarization,
and injection of code mutants. LANCE [39] uses fine-tuned
T5 to automatically generate logging statements for Java
methods. VulRepair [13] also fine-tune T5 on vulnerability
repairs datasets to automatically propose vulnerability fixes.
Zhang et al. [55] proposes to use prompting for LLM to im-
prove code version control. Ahmed et al. [1] fine-tune GPT-x
models to recommend root causes and mitigation steps to
facilitate cloud incident management. In contrast to previous
studies, RCACopilot employs advanced LLMs to summarize
diagnosis data and leverage the chain-of-thoughts ability to
predict and explain root causes.

8 Conclusion

RCACopilot represents a pioneering tool in the realm of
cloud incident management, facilitating efficient root cause
analysis for OCEs. It introduces a unique approach to multi-
source data collection through its diagnostic information col-
lection stage, utilizing predefined incident handlers. These
handlers, constructed by OCEs, systematically gather multi-
source diagnostic information, which sets the foundation
for the subsequent analysis. Furthermore, RCACopilot in-
tegrates a large language model in its root cause prediction
stage. This model autonomously processes the collected di-
agnostic data, predicting and explaining the root cause cate-
gory. This integration of AI techniques into cloud incident
management demonstrates the potential of RCACopilot in
enhancing the efficiency and accuracy of root cause analysis.

Acknowledgement

We thank our shepherd, Ang Chen, and the anonymous
reviewers for their insightful comments. We thank Ning
Ding, Xupei Wang, and Zhaoying Li for their participation,
support and contributions to the RCACopilot project. We
thank all the on-call engineerswithinMicrosoft who engaged
with us.

References

[1] Ahmed, T., Ghosh, S., Bansal, C., Zimmermann, T., Zhang, X., and
Rajmohan, S. Recommending root-cause and mitigation steps for
cloud incidents using large language models. In Proceedings of the 45th
International Conference on Software Engineering (ICSE’23) (2023).

[2] Alqraan, A., Takruri, H., Alfatafta, M., and Al-Kiswany, S. An
analysis of network-partitioning failures in cloud systems. In Proceed-
ings of the 13th USENIX Conference on Operating Systems Design and
Implementation (OSDI’18) (2018).

[3] Arzani, B., Ciraci, S., Loo, B. T., Schuster, A., and Outhred, G.
Taking the blame game out of data centers operations with netpoirot.
In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM’16)
(2016).

[4] Bansal, C., Renganathan, S., Asudani, A., Midy, O., and Janaki-
raman, M. Decaf: Diagnosing and triaging performance issues in
large-scale cloud services. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: Software Engineering in
Practice (2020).

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

[5] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.
Languagemodels are few-shot learners. Advances in neural information
processing systems (2020).

[6] Chalkidis, I. Chatgpt may pass the bar exam soon, but has a long
way to go for the lexglue benchmark. arXiv preprint arXiv:2304.12202
(2023).

[7] Chen, H., Dou, W., Jiang, Y., and Qin, F. Understanding exception-
related bugs in large-scale cloud systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE’19)
(2019).

[8] Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., Gao, F., Xu,
Z., Dang, Y., and Zhang, D. An empirical investigation of incident
triage for online service systems. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP’19) (2019).

[9] Chen, J., He, X., Lin, Q., Zhang, H., Hao, D., Gao, F., Xu, Z., Dang,
Y., and Zhang, D. Continuous incident triage for large-scale online
service systems. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE’19) (2019).

[10] Chen, J., Zhang, S., He, X., Lin, Q., Zhang, H., Hao, D., Kang, Y.,
Gao, F., Xu, Z., Dang, Y., et al. How incidental are the incidents?
characterizing and prioritizing incidents for large-scale online service
systems. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE’20) (2020).

[11] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374
(2021).

[12] Chen, Y., Sun, X., Nath, S., Yang, Z., and Xu, T. Push-Button Re-
liability Testing for Cloud-Backed Applications with Rainmaker. In
Proceedings of the 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’23) (2023).

[13] Fu, M., Tantithamthavorn, C., Le, T., Nguyen, V., and Phung, D.
Vulrepair: a t5-based automated software vulnerability repair. In
Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’22) (2022).

[14] Ganatra, V., Parayil, A., Ghosh, S., Kang, Y., Ma, M., Bansal, C.,
Nath, S., and Mace, J. Detection is better than cure: A cloud inci-
dents perspective. In Proceedings of the 31st Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) (2023).

[15] Gao, Y., Dou, W., Qin, F., Gao, C., Wang, D., Wei, J., Huang, R., Zhou,
L., and Wu, Y. An empirical study on crash recovery bugs in large-
scale distributed systems. In Proceedings of the 26th ACM joint meeting
on european software engineering conference and symposium on the
foundations of software engineering (ESEC/FSE’18) (2018).

[16] Ghosh, S., Shetty, M., Bansal, C., and Nath, S. How to fight pro-
duction incidents? an empirical study on a large-scale cloud service.
In Proceedings of the 13th Symposium on Cloud Computing (2022).

[17] Gu, J. T., Sun, X., Zhang,W., Jiang, Y.,Wang, C., Vaziri, M., Legunsen,
O., and Xu, T. Acto: Automatic End-to-End Testing for Operation
Correctness of Cloud System Management. In Proceedings of the 29th
ACM Symposium on Operating Systems Principles (SOSP’23) (2023).

[18] He, S., Zhang, X., He, P., Xu, Y., Li, L., Kang, Y., Ma, M., Wei, Y.,
Dang, Y., Rajmohan, S., et al. An empirical study of log analysis
at microsoft. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) (2022).

[19] Inam, M. A., Chen, Y., Goyal, A., Liu, J., Mink, J., Michael, N., Gaur,
S., Bates, A., and Hassan, W. U. Sok: History is a vast early warning
system: Auditing the provenance of system intrusions. In 2023 IEEE
Symposium on Security and Privacy (S&P’22) (2022).

[20] Jiang, J., Lu,W., Chen, J., Lin, Q., Zhao, P., Kang, Y., Zhang, H., Xiong,

Y., Gao, F., Xu, Z., et al. How to mitigate the incident? an effective
troubleshooting guide recommendation technique for online service
systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE’20) (2020).

[21] Jin, P., Zhang, S., Ma, M., Li, H., Kang, Y., Li, L., Liu, Y., Qiao, B.,
Zhang, C., Zhao, P., et al. Assess and summarize: Improve outage
understanding with large language models. In Proceedings of the
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) (2023).

[22] Kasai, J., Kasai, Y., Sakaguchi, K., Yamada, Y., and Radev, D. Evalu-
ating gpt-4 and chatgpt on japanese medical licensing examinations.
arXiv preprint arXiv:2303.18027 (2023).

[23] Leesatapornwongsa, T., Stuardo, C. A., Suminto, R. O., Ke, H.,
Lukman, J. F., and Gunawi, H. S. Scalability bugs: When 100-node
testing is not enough. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems (HotOS’17) (2017).

[24] Li, H., Ma, M., Liu, Y., Qin, S., Qiao, B., Yao, R., Chaturvedi, H., Tran,
T., Chintalapati, M., Rajmohan, S., Lin, Q., and Zhang, D. Codec:
Cost-effective duration prediction system for deadline scheduling in
the cloud. In Proceedings of the 34th IEEE International Symposium on
Software Reliability Engineering (2023).

[25] Li, M., Ma, M., Nie, X., Yin, K., Cao, L., Wen, X., Yuan, Z., Wu, D.,
Li, G., Liu, W., et al. Mining fluctuation propagation graph among
time series with active learning. In Database and Expert Systems
Applications: 33rd International Conference (2022).

[26] Li, Z., Chen, J., Jiao, R., Zhao, N., Wang, Z., Zhang, S., Wu, Y., Jiang,
L., Yan, L., Wang, Z., et al. Practical root cause localization for
microservice systems via trace analysis. In 2021 IEEE/ACM 29th Inter-
national Symposium on Quality of Service (2021).

[27] Li, Z., Luo, C., Chen, T.-H., Shang, W., He, S., Lin, Q., and Zhang, D.
Did we miss something important? studying and exploring variable-
aware log abstraction. arXiv preprint arXiv:2304.11391 (2023).

[28] Lian, X., Chen, Y., Cheng, R., Huang, J., Thakkar, P., and Xu, T.
Configuration validation with large language models. arXiv preprint
arXiv:2310.09690 (2023).

[29] Liu, D., He, C., Peng, X., Lin, F., Zhang, C., Gong, S., Li, Z., Ou, J., and
Wu, Z. Microhecl: High-efficient root cause localization in large-scale
microservice systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP’21)
(2021).

[30] Liu, H., Lu, S., Musuvathi, M., and Nath, S. What bugs cause pro-
duction cloud incidents? In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS’19) (2019).

[31] Liu, Y., Zhang, X., He, S., Zhang, H., Li, L., Kang, Y., Xu, Y., Ma,
M., Lin, Q., Dang, Y., et al. Uniparser: A unified log parser for
heterogeneous log data. In Proceedings of the ACM Web Conference
2022 (2022).

[32] Lou, C., Chen, C., Huang, P., Dang, Y., Qin, S., Yang, X., Li, X., Lin, Q.,
and Chintalapati, M. RESIN: A holistic service for dealing with mem-
ory leaks in production cloud infrastructure. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’22) (2022).

[33] Lou, C., Huang, P., and Smith, S. Understanding, detecting and local-
izing partial failures in large system software. In Proceedings of the 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’20) (2020).

[34] Luo, C., Lou, J.-G., Lin, Q., Fu, Q., Ding, R., Zhang, D., and Wang, Z.
Correlating events with time series for incident diagnosis. In Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (2014).

[35] Ma, M., Xu, J., Wang, Y., Chen, P., Zhang, Z., andWang, P. Automap:
Diagnose your microservice-based web applications automatically. In
Proceedings of The Web Conference 2020 (2020).

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents EuroSys ’24, April 22–25, 2024, Athens, Greece

[36] Ma, M., Yin, Z., Zhang, S., Wang, S., Zheng, C., Jiang, X., Hu, H.,
Luo, C., Li, Y., Qiu, N., et al. Diagnosing root causes of intermittent
slow queries in cloud databases. Proceedings of the VLDB Endowment
(VLDB’20) (2020).

[37] Ma, M., Zhang, S., Chen, J., Xu, J., Li, H., Lin, Y., Nie, X., Zhou, B.,
Wang, Y., and Pei, D. Jump-starting multivariate time series anomaly
detection for online service systems. In 2021 USENIX Annual Technical
Conference (ATC’21) (2021).

[38] Ma, M., Zhang, S., Pei, D., Huang, X., and Dai, H. Robust and rapid
adaption for concept drift in software system anomaly detection. In
2018 IEEE 29th International Symposium on Software Reliability Engi-
neering (ISSRE’18) (2018).

[39] Mastropaolo, A., Pascarella, L., and Bavota, G. Using deep learn-
ing to generate complete log statements. In Proceedings of the 44th
International Conference on Software Engineering (ICSE’22) (2022).

[40] Mastropaolo, A., Scalabrino, S., Cooper, N., Palacio, D. N., Poshy-
vanyk, D., Oliveto, R., and Bavota, G. Studying the usage of text-to-
text transfer transformer to support code-related tasks. In Proceedings
of the 43rd International Conference on Software Engineering (ICSE’21)
(2021).

[41] OpenAI. Tiktoken: A python library for tokenizing text. https://
github.com/openai/tiktoken, 2023.

[42] Shetty, M., Bansal, C., Upadhyayula, S. P., Radhakrishna, A., and
Gupta, A. Autotsg: learning and synthesis for incident troubleshooting.
In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’22) (2022).

[43] Sun, X., Cheng, R., Chen, J., Ang, E., Legunsen, O., and Xu, T. Testing
Configuration Changes in Context to Prevent Production Failures. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20) (2020).

[44] Sun, X., Luo, W., Gu, J. T., Ganesan, A., Alagappan, R., Gasch, M.,
Suresh, L., and Xu, T. Automatic Reliability Testing for Cluster
Management Controllers. In Proceedings of the 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’22) (2022).

[45] Tan, Y., Min, D., Li, Y., Li, W., Hu, N., Chen, Y., and Qi, G. Evaluation
of chatgpt as a question answering system for answering complex
questions. arXiv preprint arXiv:2303.07992 (2023).

[46] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and
Zhou, D. Chain of thought prompting elicits reasoning in large lan-
guage models. arXiv preprint arXiv:2201.11903 (2022).

[47] Wu, Y., Chen, A., Haeberlen, A., Zhou,W., and Loo, B. T. Automated
bug removal for software-defined networks. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’17) (2017).

[48] Xie, Z., Xu, H., Chen, W., Li, W., Jiang, H., Su, L., Wang, H., and Pei,
D. Unsupervised anomaly detection on microservice traces through
graph vae. In Proceedings of the ACM Web Conference 2023 (2023).

[49] Yan, X., Hsieh, K., Liyanage, Y., Ma, M., Chintalapati, M., Lin,
Q., Dang, Y., and Zhang, D. Aegis: Attribution of control plane
change impact across layers and components for cloud systems. In
2023 IEEE/ACM 45th International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP’23) (2023).
[50] Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang,

Y., Jain, P., and Stumm, M. Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive
systems. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14) (2014).

[51] Zeng, J., Chua, Z. L., Chen, Y., Ji, K., Liang, Z., and Mao, J. Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics. In Network and Distributed System Security Symposium
(NDSS’21) (2021).

[52] Zeng, J., Wang, X., Liu, J., Chen, Y., Liang, Z., Chua, T.-S., and Chua,
Z. L. Shadewatcher: Recommendation-guided cyber threat analysis
using system audit records. In 2022 IEEE Symposium on Security and
Privacy (S&P’22) (2022).

[53] Zeng, Z., Zhang, Y., Xu, Y., Ma, M., Qiao, B., Zou, W., Chen, Q.,
Zhang, M., Zhang, X., Zhang, H., et al. Traceark: Towards action-
able performance anomaly alerting for online service systems. In
2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP’23) (2023).

[54] Zeng, Z., Zhang, Y., Xu, Y., Ma, M., Qiao, B., Zou, W., Chen, Q.,
Zhang, M., Zhang, X., Zhang, H., Gao, X., Fan, H., Rajmohan, S.,
Lin, Q., and Zhang, D. Traceark: Towards actionable performance
anomaly alerting for online service systems. In To appear in Proc. of
ICSE (2023).

[55] Zhang, J., Mytkowicz, T., Kaufman, M., Piskac, R., and Lahiri, S. K.
Using pre-trained language models to resolve textual and semantic
merge conflicts (experience paper). In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(2022).

[56] Zhang, T., Qiu, H., Castellano, G., Rifai, M., Chen, C. S., and Pi-
anese, F. System log parsing: A survey. IEEE Transactions on Knowledge
and Data Engineering (2023).

[57] Zhang, X., Xu, Y., Qin, S., He, S., Qiao, B., Li, Z., Zhang, H., Li,
X., Dang, Y., Lin, Q., et al. Onion: identifying incident-indicating
logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2021).

[58] Zhang, Y., Guan, Z., Qian, H., Xu, L., Liu, H., Wen, Q., Sun, L., Jiang,
J., Fan, L., and Ke, M. Cloudrca: a root cause analysis framework for
cloud computing platforms. In Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management (2021).

[59] Zhang, Y., Yang, J., Jin, Z., Sethi, U., Rodrigues, K., Lu, S., and
Yuan, D. Understanding and detecting software upgrade failures in
distributed systems. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP’21) (2021).

[60] Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic chain of
thought prompting in large language models. In The Eleventh Interna-
tional Conference on Learning Representations (ICLR’23) (2023).

[61] Zhao, C., Ma, M., Zhong, Z., Zhang, S., Tan, Z., Xiong, X., Yu, L.,
Feng, J., Sun, Y., Zhang, Y., et al. Robust multimodal failure detection
for microservice systems. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (2023).

https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Incident Root Cause Analysis
	2.2 The Opportunities and Challenges of Multi-Source Data in Incident Management
	2.3 The Promise of Large Language Models for Incident Management
	2.4 Our Motivation

	3 Insights from Incidents
	4 RCACopilot
	4.1 Diagnostic Information Collection Stage
	4.2 LLMs for Incident Explanation
	4.3 Implementation

	5 Evaluation
	5.1 Target System and Dataset
	5.2 Compared Approaches
	5.3 Effectiveness and Efficiency
	5.4 Comparison Analysis
	5.5 Deployment Status and Scale
	5.6 Tustworthiness

	6 Discussion
	7 Related Work
	8 Conclusion
	References

